
Thesis for the Degree of Master of Science in Big Data Analytics 

 

 

 

An LLM-based Question Answering System 

over Relational Databases via Text-to-SQL 

 

 

 

 

 

 

Sol Jeong 

 

 

 

 

 

 

Department of Big Data Analytics 

Graduate School 

Kyung Hee University 

Yongin, Korea 

 

 

February, 2026 

 

 



 

 

 

 

An LLM-based Question Answering System 

over Relational Databases via Text-to-SQL 

 

 

 

 

 

 

Sol Jeong 

 

 

 

 

 

 

Department of Big Data Analytics 

Graduate School 

Kyung Hee University 

Yongin, Korea 

 

 

February, 2026 

 

 



An LLM-based Question Answering System 

over Relational Databases via Text-to-SQL 

 

 

by 

Sol Jeong 

 

Advised by  

Dr. Jae-Yoon Jung 

 

 

Submitted to the Department of Big Data Analytics 

and the Faculty of the Graduate School of 

Kyung Hee University in partial fulfillment 

of the requirements for degree of 

Master of Science in Big Data Analytics 

 

 

Dissertation Committee : 

Chairman    Shin Jungwoo            

            Younghoon Kim          

            Jae-Yoon Jung           

                                   



i 

 

Table of Contents 

 

Abstract  ································································································· iv 

 

1. Introduction  ··························································································1 

 

2. Related Work ·························································································4 

2.1. Digital Intelligent Assistance based on Large Language Model  ··························4 

2.2. Table-Augmented Generation via Text-to-SQL  ············································5 

 

3. Framework  ···························································································7 

3.1. Requirements  ···················································································7 

3.2. System Overview  ···············································································7 

3.3. Design of an IoT Data Mart  ···································································9 

3.3.1. Star Schema for IoTs  ······································································9 

3.3.2. Temporal Aggregation of IoT Data ···················································· 11 

3.4. Table-Augmented Generation Pipeline  ···················································· 12 

 

4. Implementation and Experiments  ································································ 15 

4.1. Experimental Setup ··········································································· 15 

4.2. Experimental Results ········································································· 17 

4.3. System Interfaces  ············································································· 19 

 

5. Discussion  ·························································································· 21 

5.1. Text-to-SQL Errors and Self-Correction ··················································· 21 

5.2. Why Star-TAG Improves Text-to-SQL Performance  ···································· 23 

 

6. Conclusions and Future Work  ···································································· 24 

 

References  ····························································································· 25 



ii 

 

 

List of Tables 

 

Table 1. Performance comparison of Text-to-SQL results ······································· 18 

 



iii 

 

 

List of Figures 

 

Figure 1. The Star-TAG framework for industrial IoT data analysis via data mart–augmented 

generation ································································································8 

 

Figure 2. Schema transformation from a wide-table format to a star schema for industrial IoT 

sensor data  ····························································································· 10 

 

Figure 3. Web-based user interfaces of the Star-TAG system  ··································· 20 

 

Figure 4. Distribution of Text-to-SQL error types across models and schema configurations 21 

 

Figure 5. Error counts across self-correction iterations  ·········································· 22 

 



iv 

 

Abstract 

 

An LLM-based Question Answering System over Relational Databases via Text-to-SQL  

 

 

by Sol Jeong 

Master of Science in Big Data Analytics 

Graduate School of Kyung Hee University 

Advised by Dr. Jae-Yoon Jung 

 

As digital transformation accelerates in manufacturing, vast amounts of industrial Internet of 

Things (IoT) sensor data are being accumulated. However, enabling shop-floor workers without 

Structured Query Language (SQL) expertise to query this data using natural language remains a 

significant challenge. Although natural language interfaces powered by Large Language Models 

(LLMs) have recently gained attention, conventional Text-to-SQL approaches for 

manufacturing IoT data are hindered by wide-table schemas that expand the search space and 

induce hallucinations, as well as by high-frequency time-series data that require costly 

aggregation, thereby limiting real-time responsiveness. To address these challenges, this study 

proposes Star-TAG, an LLM-based question answering framework that integrates star-schema–

based IoT data mart with a Table-Augmented Generation (TAG) pipeline. The framework 

restructures wide-table IoT data into a star schema with time-based aggregation and employs 

schema-aware prompting that explicitly models fact–dimension relationships for the LLM. 

Experiments on real-world battery manufacturing data show that Star-TAG achieves 72.0% 

execution accuracy on synthetic benchmarks, a 44.0 percentage-point improvement over wide-

table baselines, while reducing token usage by 51.1%. In addition, lightweight open-source 

models attain performance comparable to commercial models under Star-TAG, indicating that 

schema-driven optimization can mitigate model-scale limitations. These results demonstrate that 

efficient LLM-based natural language interfaces can substantially enhance data accessibility for 

shop-floor workers in manufacturing environments subject to security and computational 

constraints. 
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1 Introduction 

Modern manufacturing is undergoing accelerated digital transformation through the 

adoption of smart factories, leading to the accumulation of vast amounts of industrial Internet of 

Things (IoT) data on shop floors (Tao et al., 2019; Zhong et al., 2017). Although Human-

Machine Interfaces (HMIs) have been widely used to deliver operational information to workers 

in such environments, it remains difficult for shop-floor personnel to directly access and 

interpret insights from this massive volume of data (Kumar & Lee, 2022). This is because 

conventional HMI dashboards cannot effectively address workers’ specific queries about 

complex shop floor data (Mourtzis et al., 2022), and it is impractical to predefine and distribute 

all potentially relevant data through fixed mobile or HMI interfaces. 

Recently, large language models (LLMs) have enabled natural language–based question 

answering (QA) systems for shop-floor applications via mobile devices and industrial 

applications (Zhang et al., 2025). However, most existing studies focus on unstructured data 

such as work instructions or equipment manuals (Kernan Freire et al., 2024; Garcia et al., 2024), 

or on general relational database (RDB) processing. In contrast, QA systems designed 

specifically for high-frequency sensor-based IoT data—which are central to real-world 

manufacturing operations—remain largely unexplored. 

Although Text-to-SQL techniques have been extensively studied for natural language 

access to RDB, directly applying them to manufacturing IoT data introduces significant 

challenges. First, sensor measurements are often stored in heterogeneous and schema-inefficient 

formats, most notably in wide-table schemas in which tens to hundreds of similarly named 

sensor attributes are arranged horizontally in a single table. Such designs substantially increase 

the contextual complexity that LLMs must process and expand the search space for column 

selection, thereby degrading Structured Query Language (SQL) generation accuracy (Li et al., 

2023; Lei et al., 2024). As a result, LLMs may select incorrect columns or generate non-existent 

attributes, leading to hallucinations (Cao et al., 2024; Qu et al., 2024). 

Second, manufacturing IoT systems generate massive volumes of time-series data at sub-

second granularity. Although sensors may record values at millisecond or second intervals 

(Wang et al., 2023), shop-floor workers typically require aggregated information over 

meaningful time windows, such as “the average temperature of equipment X at 3 PM.” Under 
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high-frequency storage schemes, even a simple one-hour query may involve scanning and 

aggregating thousands of records, resulting in high latency and computational overhead. 

Consequently, conventional Text-to-SQL approaches struggle to deliver responsive and reliable 

QA for industrial IoT data, limiting their practical applicability on the shop floor. 

To overcome these challenges, this study proposes an LLM-based QA framework that can 

reliably answer questions about industrial IoT data on shop floors. While existing Text-to-SQL 

research has focused on improving models or prompting strategies given a fixed schema, this 

approach adopts a data-centric methodology that proactively designs DB schemas optimized for 

LLM reasoning (Zha et al., 2025). Specifically, sensor DBs stored in RDBs are restructured into 

star schema-based data marts suitable for analysis (Kimball & Ross, 2013), and schema-aware 

prompting strategies that are easier for LLMs to interpret are employed. As a result, Table -

Augmented Generation (TAG)—an end-to-end pipeline from natural language queries to SQL 

generation and natural language responses—is implemented (Biswal et al., 2024), enabling 

shop-floor workers without SQL expertise to query industrial data and obtain analytical 

responses in natural language. 

To empirically validate the effectiveness of the proposed system, a QA system was built 

using one week of operational data from battery manufacturing equipment. After transforming 

the raw IoT data from the RDB into a star schema-based data mart, the QA system was 

implemented using both a commercial LLM accessed via API (GPT-4.1) and open-source 

LLMs deployable on-premise (Gemma3-12B and Qwen3-4B). For evaluation, experiments 

were conducted using a real-world shop-floor use-case dataset and a synthetic dataset generated 

following the OmniSQL methodology (Li et al., 2025). The results indicate that, across all three 

models, the proposed system achieved an average 44.0 percentage-point improvement in 

execution accuracy over wide-table baseline while reducing token usage by 51.1%. Furthermore, 

the success rate after self-correction reached 100% in the star-schema environment, 

demonstrating that schema design improves not only accuracy but also system robustness.  

The main contributions of this study are as follows: 

 Data-centric Text-to-SQL approach: Unlike existing research that focuses on model and 

prompt engineering, this study presents a new direction for enhancing LLM performance 

through schema-driven optimization. The impact of star schema-based data marts on LLM 
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SQL generation accuracy, token efficiency, and error recovery is empirically demonstrated. 

 Application of the TAG pipeline to manufacturing IoT domain: An end-to-end QA 

system encompassing natural language answer generation beyond SQL generation is 

applied to manufacturing IoT data, enabling shop-floor workers to perform data-driven 

decision making without SQL expertise. 

 Empirical validation and practical guidelines: The effectiveness of the methodology is 

demonstrated through both use-case-based evaluation on real Manufacturing Execution 

System (MES) data and quantitative benchmarking using OmniSQL-based synthetic 

datasets. Additionally, common error types observed in the experiments are analyzed, and 

actionable guidelines for real-world deployment are provided. 

 

The remainder of this paper is organized as follows. Chapter 2 reviews related work on 

LLM-based industrial assistants and Text-to-SQL. Chapter 3 presents the system architecture, 

star schema-based data mart design strategy, and TAG pipeline including Schema-Aware 

Prompting. Chapter 4 describes the experimental setup, reports performance comparisons, and 

presents the implemented system interfaces. Chapter 5 analyzes Text-to-SQL error patterns with 

self-correction mechanisms and discusses the structural factors underlying Star-TAG's 

performance improvements. Finally, Chapter 6 presents conclusions and future research 

directions. 
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2 Related Work 

2.1 Digital Intelligent Assistance based on Large Language Model 

Digital Intelligent Assistants (DIAs) are intelligent software applications that provide 

services through natural language interaction with users (Maedche et al., 2019; Wellsandt et al., 

2022). DIAs consist of a combination of conversational agents (McTear, 2022) and technology-

based agents, which interpret user intent and achieve task objectives by integrating with external 

systems (Wellsandt et al., 2022). 

The technical components of DIAs are defined as five core elements (Wellsandt et al., 

2022): Speech-to-Text (STT) for voice input recognition, natural language understanding for 

intent parsing, dialog management for conversation flow control, external information system 

connections for data access, and Text-to-Speech (TTS) for response delivery. Among these, 

connectivity to external information systems is a key factor that determines the practical 

capability and intelligence level of DIAs (Wellsandt et al., 2022). In manufacturing 

environments, data-driven decision making on the shop floor becomes possible only when DIAs 

can access production DBs, equipment status, and operational metrics. 

Traditional DIA research in industrial settings has primarily focused on predictive 

maintenance and worker support. Wellsandt et al. (2022) proposed a five-stage predictive 

maintenance framework—Sense-Detect-Predict-Decide-Act—where DIAs served as interfaces 

to communicate analysis results from rule-based systems to maintenance personnel. However, 

this approach relied on predefined rules and rigid workflows, limiting its ability to flexibly 

respond to diverse natural language queries. 

Recent advances in LLMs have enabled more flexible DIA implementations in 

manufacturing environments. Yuan et al. (2025) proposed “Chat with MES,” demonstrating that 

MESs can be operated through natural language interfaces. Colabianchi et al. (2024) evaluated 

the applicability of LLM-based DIAs in assembly-line manufacturing environments. These 

studies showed that LLMs can interpret ambiguous user inputs and decompose complex tasks 

into multi-step actions. 

However, existing LLM-based DIA research has primarily addressed system control 

interfaces or unstructured document retrieval, and natural language QA over IoT sensor data 

stored in RDB remains underexplored. Shop-floor operators and managers require insights into 
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equipment performance, product quality, and production trends without SQL expertise. To 

achieve this, DIAs must be able to translate users’ natural language questions into executable 

DB queries and return accurate analytical results. This study addresses this gap by implementing 

the DIA’s external information system connection as Text-to-SQL-based natural language data 

querying mechanism. 

 

2.2 Table-Augmented Generation via Text-to-SQL 

Recently, Retrieval-Augmented Generation (RAG) technology has been widely utilized for 

QA on unstructured documents (Lewis et al., 2020). However, since RAG relies on vector 

similarity-based document retrieval, it cannot accurately perform relational operations such as 

aggregation, filtering, and joins on structured data stored in RDBs. Therefore, accurate TAG 

requires a mechanism that interprets users’ intent from natural language and generates SQL 

queries. 

Technology for querying structured data in RDBs through natural language has been 

studied for a long time. The core technology, Text-to-SQL, is a task that converts users’ natural 

language questions into executable SQL queries (Hong et al., 2025). This technology originated 

from rule-based systems in the 1970s, evolved through LSTM and Transformer-based deep 

learning approaches in the 2010s, and advanced to methods leveraging pre-trained language 

models (PLMs) such as BERT and RoBERTa. Recently, the emergence of LLMs has 

established a new paradigm in the Text-to-SQL field. 

Key techniques for LLM-based Text-to-SQL include In-context Learning (ICL) (Brown et 

al., 2020) and Chain-of-Thought (CoT) (Wei et al., 2022) prompting. ICL guides the model to 

learn SQL generation patterns by including a few examples in the prompt, while CoT enhances 

reasoning accuracy by decomposing complex query generation processes in to explicit steps. The 

performance of these techniques is evaluated through the Spider (Yu et al., 2018) and BIRD (Li 

et al., 2023) benchmarks. Spider is a cross-domain benchmark containing over 200 DBs, while 

BIRD raises practical difficulty by including questions that require real DB environments and 

external knowledge. 

However, Text-to-SQL only addresses the stage of converting natural language questions 

to SQL and does not cover the end-to-end QA pipeline that returns results to users in natural 
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language. To address this limitation, Biswal et al. (2024) proposed TAG. TAG is a framework 

that integrates the entire process of natural language-based data querying, consisting of  three 

stages: (1) Query Synthesis – converting natural language questions to SQL queries 

(corresponding to Text-to-SQL), (2) Query Execution – executing queries to extract data, and 

(3) Answer Generation – producing natural language responses based on extracted data. In other 

words, while Text-to-SQL was limited to returning tables or scalar values, TAG delivers user-

friendly natural-language answers, enabling shop-floor workers without SQL knowledge to gain 

insights from data. 

Since this study targets structured IoT sensor data, it adopts the Text-to-SQL-based TAG 

approach. When applying the TAG paradigm to manufacturing IoT DBs, the inherent schema 

complexity becomes problematic, hindering LLM schema comprehension and inducing 

hallucinations. To address this, this study ensures TAG reliability by building a TAG pipeline 

that applies Text-to-SQL after reducing schema complexity via star schema-based data mart 

design (Kimball & Ross, 2013), which has been widely utilized for analytical query 

optimization. 

 



７ 

 

3 Framework 

3.1 Requirements 

This chapter introduces a framework for natural language QA on manufacturing IoT sensor 

data and defines three key design requirements that the system must satisfy. These requirements 

are derived from the limitations of existing Text-to-SQL approaches and guide the subsequent 

data mart and TAG pipeline design. 

Easy query for non-experts. The system must enable shop-floor workers without SQL 

expertise to query data using natural language and obtain analytical answers. Existing Text-to-

SQL systems often only return query execution results as tables or scalar values. However, since 

shop-floor workers are not accustomed to interpreting raw SQL outputs, context-aware natural 

language responses are required rather than simple numerical listings. To address this, chapter 

3.4 introduces a TAG pipeline with an Interpretive Answer Generation technique that converts 

SQL execution results into contextualized natural language responses. 

Accurate query results and relevant answer. The QA system must generate correct SQL 

queries for users’ natural language questions and return accurate execution results. When 

applying existing Text-to-SQL approaches to IoT data, hallucinations occur because LLMs fail 

to identify correct attributes or generate non-existent columns in wide-table schemas, where tens 

to hundreds of attributes are listed in a single table. Therefore, to reduce the LLM search space 

and improve schema comprehension, chapter 3.3 proposes a star schema-based data mart design. 

Low token usage and fast response time. The QA system must minimize prompt token 

consumption and query processing latency. IoT sensors in manufacturing processes collect data 

at sub-second resolution, resulting in massive time-series datasets. When such high-frequency 

data are queried directly, even simple aggregate queries require scanning thousands of records, 

and large numbers of tokens are needed to encode wide-table schemas in prompts. This leads to 

increased response latency and API costs. To address this, chapter 3.3 introduces time-based 

pre-aggregation (Temporal Aggregation) and compact schema representations to improve 

efficiency. 

 

3.2 System Overview 

Star-TAG is a framework that integrates a star schema-based data mart with a TAG 
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pipeline. As shown in Figure 1, the proposed framework consists of two phases: the build-time 

phase, in which the IoT data mart is constructed, and the run-time phase, in which TAG is 

executed via Text-to-SQL. 

 

 

Figure 1. The Star-TAG framework for industrial IoT data analysis via data mart–augmented 
generation. 

 

Build-time: Design of an IoT Data Mart. In this phase, a data mart tailored for natural 

language QA is constructed from the original operational DB. IoT sensor data from 

manufacturing shop floors are generated at high frequency by Online Transaction Processing 

(OLTP) systems and are typically stored in RDBs as wide tables with complex semantics. The 

Extract, Transform, and Load (ETL) process applies time-based aggregation (Temporal 

Aggregation) to this raw data, transforming it into analysis-ready representation. The 

transformed data are loaded into a data mart with a star-schema structure, consisting of a central 

Fact table (sensor measurements) surrounded by Dimension tables that provide contextual 

information such as time, location, equipment, and sensor attributes. 

Run-time: Table-Augmented Generation (TAG) Pipeline. In this phase, users’ natural 

language queries are processed based on the prestructured data mart. The two phases are 



９ 

 

connected through Schema Knowledge Injection, whereby the data mart’s schema and semantic 

information are injected into the run-time prompt. When shop-floor workers submit questions in 

natural language, the LLM-based Agent generates responses through the TAG pipeline—Query 

Synthesis, Query Execution, and Interpretive Answer Generation—as illustrated in the right-

hand panel of Figure 1. 

 

3.3 Design of an IoT Data Mart 

The MES DB on shop floors is an OLTP system for real-time transaction processing, and 

performing analytical queries directly on the operational DB is inappropriate from the 

perspectives of system load and stability. The analytical QA targeted by this study requires 

Online Analytical Processing (OLAP) characteristics such as aggregation, filtering, and 

multidimensional analysis. To meet these requirements, a dedicated data mart optimized for 

OLAP workloads is designed. 

When utilizing the original MES DB directly for Text-to-SQL, two problems arise. First, 

massive volumes of rows accumulate due to high-frequency, sub-second sensor data. Second, 

the DB has a wide-table schema, in which all sensor measurements are stored as columns in a 

single table. These characteristics significantly expand the LLM’s search space and hinder 

schema comprehension, thereby degrading SQL generation accuracy. To address these problems, 

this study restructures the data repository by transforming the wide-table schema into a star 

schema. 

 

3.3.1 Star Schema for IoTs 

To store IoT data in RDBs, the wide-table schema, which integrates multiple sensor 

attributes into a single table, is commonly used. A wide-table schema is a data model that stores 

each sensor measurement as a separate column and is widely used in sensor-cloud and IoT 

platforms (Ma & Yang, 2014; Blondheim, 2025). In industrial IoT environments, hundreds of 

sensors installed on a single piece of equipment generate data concurrently, making it common 

to store area-specific sensor measurements as separate columns (Wang et al., 2023). For 

example, in a battery dry room, temperature, differential pressure, and supply-fan speed for each 

region are stored as individual columns. The original data in this study also follows this 
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structure, with region, sensor type, and measurement semantics encoded in column names (e.g., 

REGION_01_TEMPERATURE_PV, REGION_01_DIFF_PRESSURE_UPPER, 

REGION_01_SUPPLY_FAN_RPM). In such a flat schema, the LLM must identify columns 

relevant to the question among numerous similarly named attributes, which can lead to 

hallucinations in which incorrect columns are selected. 

The star schema is a standard data warehouse modeling technique consisting of a central 

Fact table surrounded by Dimension tables. The Fact table stores measurements that are the 

subject of analysis, while Dimension tables def ine the context in which those measurements 

occurred. In this study, hourly aggregated sensor statistics are modeled as Facts, and four 

analytical axes constituting the measurement context are modeled as Dimensions (see Figure 2). 

The time dimension (dim_time) specifies time attributes of measurement points, the equipment 

dimension (dim_equipment) specifies equipment information, the region dimension 

(dim_region) specifies specific location information within equipment, and the sensor 

dimension (dim_sensor) describes the sensor types deployed at each location. Raw sensor 

readings are aggregated into hourly maxima, minima, and averages and stored in the Fact table. 
 

 

Figure 2. Schema transformation from a wide-table format to a star schema for industrial 

IoT sensor data. 
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The choice of a star schema is motivated by its compatibility with LLM-based SQL 

generation. First, hierarchical dimension designs such as Snowflake Schema increase JOIN 

depth and complicate query synthesis for LLMs. In contrast, the star schema requires only 

single-hop joins between the Fact and Dimension tables, resulting in simpler and more 

predictable SQL structures. Second, LLMs have been exposed to OLAP-style query patterns—

filtering by Dimensions and aggregating from Facts—during pre-training, making the fact–

dimension separation of the star schema naturally aligned with their learned representations. 

This star-schema design improves Text-to-SQL performance in two ways. First, schema 

complexity is significantly reduced. As shown in Figure 2, a wide table with 69 columns used in 

this study is restructured into four Dimension tables and one Fact table, substantially 

simplifying the schema information that the LLM must process in the prompt. Second, the 

explicit separation of roles between Fact and Dimension tables clarifies SQL generation patterns. 

In analytical queries, Dimension tables supply filtering conditions (the SQL WHERE clause) 

and grouping criteria (the SQL GROUP BY clause), while the Fact table becomes the target of 

aggregate functions (e.g., MAX, MIN, AVG, and SUM). This clear role separation guides the 

LLM to select the correct JOIN path and aggregate syntax. Moreover, the star schema offers 

superior extensibility: when new sensors or equipment are introduced, wide tables require costly 

schema alterations (ALTER TABLE), whereas the star schema accommodates such changes by 

adding rows to the relevant Dimension tables, thereby preserving schema stability. 

 

3.3.2 Temporal Aggregation of IoT Data 

To address the data-volume challenge, time-based aggregation (Temporal Aggregation) is 

applied during the Extract, Transform, and Load (ETL) process. The original data records 

sensor readings at sub-second resolution, yielding approximately 148,000 records over seven 

days. These data are aggregated into one-hour windows and transformed into summary statistics, 

including mean, maximum, minimum, and null ratio for each interval. Through this process,  the 

dataset is reduced to approximately 3,700 records, achieving nearly a 40-fold reduction in 

physical search space. 

The rationale for adopting a one-hour aggregation interval is as follows. The queries that 
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shop-floor workers and managers typically require are aggregated values over specific time 

points or intervals, such as “the average temperature of equipment X at 3 PM” or “the time 

period when the highest pressure occurred yesterday.” Directly querying raw sub-second data is 

only necessary in specialized scenarios, such as anomaly detection or fine-grained diagnostics. 

The one-hour resolution aligns with the temporal granularity commonly used on the shop floor, 

including shift-based analysis, daily trend monitoring, and time-window comparisons. This pre-

aggregation enables the LLM to operate on meaningful statistical units rather than individual 

measurements, allowing analytical queries to be processed with simple SELECT statements. For 

example, the question “What was the average temperature of equipment X last week?” would 

otherwise require on-the-fly aggregation over hundreds of thousands of records, whereas in the 

data mart it can be answered by directly querying precomputed hourly averages. This simplifies 

SQL generation and reduces error likelihood by eliminating unnecessary aggregation operations. 

 

3.4 Table-Augmented Generation Pipeline 

The TAG pipeline answers users’ natural language queries based on the preconstructed 

data mart. The build-time phase and run-time phase are connected through Schema Knowledge 

Injection, whereby schema metadata from the data mart constructed during build-time—

including table definitions and foreign key relationships—is extracted in Data Definition 

Language (DDL) format and injected into the LLM prompt at run time, enabling the LLM to 

comprehend the data mart structure and generate accurate SQL queries. 

When shop-floor workers submit questions in natural language, the LLM-based agent 

produces responses through the three-stage pipeline illustrated in Figure 1: 

 

Query Synthesis. The user’s natural language question is translated into an executable 

SQL query. This stage consists of two substeps. First, in Schema-Aware Prompting, a prompt is 

constructed by combining the DDL-based schema description with the user’s question. Then, in 

Text-to-SQL generation, the constructed prompt is fed to the LLM to produce an SQL query. 

Query Execution. The generated SQL query is executed against the IoT data mart, and the 

resulting table is returned. The star-schema design ensures efficient joins between Fact and 

Dimension tables, enabling low-latency query processing. 
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Interpretive Answer Generation. The returned result table is transformed into a natural 

language answer. In this stage, the user’s original question and the query results are prov ided to 

the LLM, which generates a contextualized natural language response that includes 

interpretation of the results along with supporting tables for reference. 

 

In the Interpretive Answer Generation stage, results obtained through query execution are 

converted into user-friendly natural language answers. Existing Text-to-SQL systems often only 

return query execution results in tabular form. However, since shop-floor workers are not 

accustomed to interpreting raw SQL outputs, context-aware responses are required rather than 

simple numerical listings. Accordingly, this study proposes an Interpretive Answer Generation 

module to produce responses that include both interpretation and contextual information about 

query results. 

Interpretive Answer Generation is designed to generate responses containing four elements. 

First, a direct answer to the question is provided with appropriate units (e.g., “The average 

temperature of REGION_01 is 96.3°C”). Second, contextual interpretation of the result is added 

(e.g., “This is within the normal operating range”). Third, when multiple values are returned, 

trend analysis is performed (e.g., “There is a gradually increasing trend from August 1st to 4th”). 

Fourth, anomalies or actionable alerts are presented when applicable. Queries on the shop floor 

are systematically categorized into types such as single-value lookup, period-based trends, inter-

zone comparisons, statistical verification, and threshold-based filtering. Accordingly, an 

adaptive few-shot strategy is applied that dynamically selects response examples based on the 

detected question type. Specifically, the question type is identified via keyword-based 

classification, and only type-relevant examples are included in the prompt. This approach 

reduces prompt token usage while eliciting responses that are better aligned with the 

characteristics of each question type. 
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Prompt Template 1. Prompt for Interpretive Answer Generation 

You are an assistant for shop-floor workers. 

 

## Question 

{question} 

 

## SQL Result 

{result_table} 

 

## Response Guidelines 

1. Direct answer: State values with units 

2. Interpretation: Normal/high/low, trend, or comparison 

3. Keep concise (2-3 sentences), no technical jargon 

 

## Example for few-shot strategy 

{selected_example} 

 

Response: 
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4 Implementation and Experiments 

4.1 Experimental Setup 

Experiments were conducted using three LLMs: GPT-4.1 (accessed via a commercial API 

from OpenAI), Gemma3-12B (a Google-developed open-source model with 12 billion 

parameters), and Qwen3-4B (an open-source model with 4 billion parameters developed by 

Alibaba). The inclusion of lightweight open-source models, often referred to as small language 

models (SLMs), alongside a commercial LLM was motivated by deployment constraints 

commonly observed in manufacturing environments, where strict security policies, air-gapped 

networks, and data governance requirements often prohibit outbound API calls. Under such 

conditions, on-premise deployable SLMs represent a practical and scalable alternative for 

industrial applications. 

The open-source models were executed on a server equipped with two NVIDIA TITAN 

RTX GPUs, providing a total of 48 GB of VRAM. For data storage, PostgreSQL 16.3, an open-

source relational database management system, was employed. To ensure reproducibility and 

fair comparison, identical generation parameters were applied across all models (temperature = 

0; max_tokens = 4,096; seed = 42). 

The primary objective of this experimental study was to evaluate the impact of schema 

design on Text-to-SQL performance, specifically comparing wide-table and star schema-based 

data mart configurations. To this end, two complementary evaluation datasets were constructed. 

Query set A: Industry requirements-based queries. Twenty questions were constructed 

based on a User Requirements Specification (URS) provided by an industrial partner. The URS 

reflects realistic information needs of shop-floor operators and engineers in a manufacturing 

environment. These questions were categorized into four types: simple lookup (5), conditional 

filtering (5), aggregation and statistics (5), and complex join and comparison (5). Because 

identical questions were posed to both schemas, Query set A enables controlled comparison of 

schema impact while holding query content constant. 

Query set B: Synthetic benchmark queries. This dataset was generated using the data 

synthesis methodology of OmniSQL (Li et al., 2025). OmniSQL generates query data at four 

difficulty levels: Simple, Moderate, Complex, and Highly Complex. The Simple level was 

selected because typical analytical queries in manufacturing environments—such as sensor 
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lookups and threshold-based filtering—primarily involve SELECT operations with 

straightforward WHERE conditions. Since OmniSQL generates question–SQL pairs 

conditioned on the input schema, 94 questions were independently generated for each schema. 

This design allows Query set B to serve as a schema-aware benchmark that complements the 

requirements-based evaluation of Query set A. 

 

Text-to-SQL performance was evaluated using four metrics, each capturing a distinct 

aspect of system quality: 

Execution Success Rate (ESR): The proportion of generated SQL queries that execute 

successfully on the database without syntax or execution errors. ESR measures the LLM’s 

ability to produce syntactically valid and executable SQL, serving as a baseline indicator of 

query generation reliability. 

Execution Accuracy (EX): A Text-to-SQL evaluation metric proposed in the BIRD 

benchmark (Li et al., 2023). EX determines whether the generated SQL and the ground-truth 

SQL return identical result sets when executed on the same database. Unlike the traditional 

Exact Match (EM) approach, which requires exact string matching of SQL queries, EX 

evaluates semantic equivalence at the execution level, allowing structurally different but 

logically equivalent SQL queries to be counted as correct. 

Token Usage (TU): The total number of tokens consumed during SQL generation (input + 

output). TU reflects the efficiency of schema representation and SQL generation, directly 

impacting API costs for commercial models and context window utilization for resource-

constrained deployments. 

Response Time (RT): The elapsed time from natural language question input to SQL 

generation completion. RT assesses the system's suitability for interactive shop-floor 

applications, where near-instantaneous feedback is required to support effective decision 

making by shop-floor operators. 
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4.2 Experimental Results 

To isolate the effect of schema design, the proposed Star-TAG framework was compared 

against a wide-table baseline. Both configurations utilized the same industrial IoT data 

repository and were evaluated using an identical TAG pipeline, differing only in the underlying 

data schema design. Table 1 summarizes the performance comparison across all models and 

query sets. 

Query set A, constructed based on the URS, was applied to all three LLMs for comparison 

(Table 1, Query set A). Across all models, Star-TAG consistently outperformed the wide-table 

baseline in both execution reliability and semantic accuracy. In terms of Execution success rate 

(ESR), Star-TAG achieved 90.0–95.0%, compared to 55.0–95.0% for the wide table, with 

improvements of up to 40.0 percentage points observed for Gemma3-12B. For Execution 

Accuracy (EX), the improvements were more pronounced: Star-TAG achieved 55.0–70.0%, 

whereas the wide table achieved only 5.0–30.0%, representing gains of 35.0 to 65.0 percentage 

points across the three models. Token usage decreased by 21.9–36.7%, demonstrating the 

efficiency of the compact star schema representation. Response time exhibited model-dependent 

behavior, with no consistent trend observed across configurations. 

For Query set B, the 94 question–SQL pairs generated for each schema were applied to all 

three models (Table 1, Query set B). Star-TAG achieved Execution Accuracy values ranging 

from 66.0% to 75.5%, compared to 18.1–38.3% for the wide table, representing gains of 36.2 to 

57.4 percentage points across the three models. Execution success rate also improved 

consistently, with Star-TAG achieving 97.9–100.0%, compared to 88.3–97.9% for the wide 

table. A key finding emerges from the substantial gap between ESR and EX in the wide-table 

condition. Despite achieving relatively high ESR (88.3–97.9%), wide table’s EX remained low 

(18.1–38.3%). This disparity indicates that a substantial proportion of generated queries 

executed successfully but returned incorrect results, suggesting that LLMs struggle to reliably 

select the correct columns among numerous similarly named attributes in wide-table schemas, a 

phenomenon commonly referred to as column selection hallucination. 
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Table 1. Performance comparison of Text-to-SQL results 

Dataset Metric1) 
GPT-4.1 (1,800B)2) Gemma3 (12B) Qwen3 (4B) 

Wide-table Star-TAG Improve. Wide-table Star-TAG Improve. Wide-table Star-TAG Improve. 

Query set A 

ESR [%] 95.003) 95.00 - 55.00 95.00 40.00 65.00 90.00 25.00 

EX [%] 30.00 65.00 35.00 5.00 70.00 65.00 5.00 55.00 50.00 

Avg. TU [#] 1,832 1,160 672 1,792 1,201 591 1,879 1,467 412 

Avg. RT [s] 6.20 5.31 0.89 9.56 9.61 -0.05 11.35 12.75 -1.4 

Query set B 

ESR [%] 97.90 100.00 2.10 88.30 97.90 9.60 88.30 97.90 9.60 

EX [%] 38.30 74.50 36.20 27.70 66.00 38.30 18.10 75.50 57.40 

Avg. TU [#] 1,860 848 1,012 1,649 772 877 1,784 969 815 

Avg. RT [s] 6.47 6.85 - 0.38 5.66 3.18 2.48 9.90 6.93 2.97 

1) ESR: Execution success rate, EX: Execution accuracy, TU: Token usage, RT: Response time 

2) The number of parameters is not publicly disclosed; the value is estimated. 

3) Bold indicates the best performance in each row. 
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A particularly notable result is that Qwen3, despite having the smallest parameter size (4B), 

achieved the highest Execution Accuracy (EX) of 75.5% under Star-TAG—comparable to, and 

marginally exceeding, GPT-4.1 (74.5%). This finding suggests that schema-driven optimization 

can effectively compensate for model-scale limitations, enabling smaller models to achieve 

competitive Text-to-SQL performance. In terms of token efficiency, Star-TAG consistently 

reduced token usage across all models, with reduction rates ranging from 45.7% for Qwen3 to 

54.4% for GPT-4.1. This reduction can be attributed to the compact star schema representation, 

which encodes equivalent semantic information in fewer tokens than the wide table's extensive 

column listings. 

 

4.3 System Interfaces 

To demonstrate the practical deployability of the proposed framework, a web-based user 

interface was implemented. This interface enables shop-floor operators without SQL expertise 

to query industrial IoT data using natural language and receive contextualized analytical 

responses in real time. 

Figure 3 presents the system interface on (a) PC web and (b) mobile web platforms. The 

PC web interface consists of four main components, as shown in Figure 3(a). First, the Settings 

panel allows users to select the schema type (wide table or data mart) and the LLM model 

(GPT-4.1, Gemma3, or Qwen3), enabling controlled comparison of schema design and model 

behavior within a unified interface. Second, the Example Questions panel provides predefined 

shop-floor–oriented queries. Third, upon user input, the system automatically classifies the 

question type (e.g., single value, statistics, or time series) and returns a natural language 

response with contextual interpretation, together with the corresponding query result table. 

Fourth, the generated SQL query is explicitly displayed, ensuring transparency and traceability 

of the data retrieval process for system auditing. The mobile web interface was designed to 

support on-site decision making, reflecting the mobility requirements of shop-floor personnel, 

as shown in Figure 3(b). This design enables workers to access analytical insights directly at the 

point of operation without reliance on fixed terminals. 
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(a) PC web interface with single-value query (b) Mobile interface with statistical query 

Figure 3. Web-based user interfaces of the Star-TAG system. 

 

The system supports multiple types of data queries commonly required in shop-floor 

operations. For single-value queries, the system returns aggregated sensor measurements at 

specified time points. For example, in response to the question "Let me know the average 

temperature of REGION 1 on August 1, 2024," the system provides both the numerical value 

(94.8°C) and an interpretation indicating whether it falls within the normal operating range (see 

Figure 3(a)). For statistical queries, the system performs comparative analysis across multiple 

regions or equipment. In response to the question "What was the average temperature recorded 

in each zone on August 5, 2024?", the system presents average temperatures for each region in a 

table and provides comparative analysis such as identifying the highest and lowest values across 

zones (see Figure 3(b)). For time-series queries, the system returns sequential measurements 

over specified periods to support trend analysis and anomaly detection. 
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5 Discussion 

5.1 Text-to-SQL Errors and Self-Correction 

This chapter examines how the structural properties of the star schema influence Text-to-

SQL reliability through error analysis and assesses the contribution of schema design to error 

mitigation. 

Across the 564 total experiments on Query set B (2 schemas × 94 synthetic queries × 3 

models), the wide-table configuration resulted in 24 execution failures (8.5%), whereas the Star-

TAG configuration produced only 4 failures (1.4%). Figure 4 summarizes the distribution of 

error types across models and schema configurations. 

 

 

Figure 4. Distribution of Text-to-SQL error types across models and schema configurations. 

 

Hallucination—where the LLM generates references to non-existent columns—was the 

dominant error type in both schemas; however, it occurred frequently in the wide-table 

configuration (8 cases for Qwen3-4B and 5 cases for Gemma3-12B), while Star-TAG exhibited 

substantially fewer occurrences (2 cases for Gemma3-12B and 1 case for Qwen3-4B). Notably, 

GPT-4.1 exhibited no hallucination errors under either schema configuration, suggesting greater 

robustness to schema complexity in larger models. These results indicate that the explicit fact–

dimension structure of the star schema effectively reduces column selection errors by 

constraining the LLM’s search space, with particularly pronounced benefits for resource-

constrained open-source models. 

Figure 5 illustrates the effectiveness of self-correction, in which PostgreSQL error 

messages generated from failed SQL executions were fed back to the LLM to regenerate queries. 
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Under the Star-TAG configuration, all four initial execution failures were resolved with a single 

retry, achieving a 100% execution success rate across all models. In contrast, under the wide-

table schema, Gemma3-12B and Qwen3-4B retained 5 and 8 execution failures, respectively, 

even after two self-correction attempts. Only GPT-4.1 achieved complete error resolution with a 

single retry under the wide-table schema, indicating that higher-capacity models can partially 

mitigate the impact of schema complexity. 

 

 

(a) Wide-table configuration             (b) Star-TAG configuration 

Figure 5. Error counts across self-correction iterations. 

 

This disparity in recovery performance can be attributed to differences in schema 

complexity. The Star-TAG schema contains only 12 columns in total; therefore, even when 

hallucination occurs, the correct column name can often be inferred from the schema context 

provided alongside the database error message (e.g., "column X does not exist"). In contrast, the 

wide-table schema comprises 69 columns with numerous similarly named fields, making it 

difficult for the LLM to identify the intended column based on the error message alone. 

Consequently, Star-TAG not only reduces the frequency of execution errors but also facilitates 

effective error recovery through self-correction, resulting in higher reliability for practical 

deployment in manufacturing environments. 
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5.2 Why Star-TAG Improves Text-to-SQL Performance 

This chapter analyzes the structural factors through which the star schema design 

underlying Star-TAG improves Text-to-SQL performance. Three key mechanisms are 

identified: temporal expression clarity, output format consistency, and schema complexity 

reduction. First, the star schema enhances the clarity of temporal expressions. In the wide-table 

configuration, temporal conditions such as "from 10 AM to 12 PM" can be translated into 

multiple semantically equivalent but syntactically different SQL formulations, including 

timestamp range predicates (e.g., "CreDate" >= '2024-08-01 10:00:00' AND "CreDate" < '2024-

08-01 12:00:00'), EXTRACT-based conditions (e.g., EXTRACT(HOUR FROM "CreDate") 

BETWEEN 10 AND 12), or date_trunc-based expressions. This syntactic variability increases 

the likelihood of mismatch between LLM-generated queries and ground-truth SQL—even when 

both are semantically correct. In contrast, the star schema provides an explicit and discrete time 

dimension (e.g., dim_time.hour BETWEEN 10 AND 12), thereby reducing representational 

ambiguity and guiding the LLM toward a more consistent formulation. 

Second, the star schema promotes consistency in output structure. When aggregating 

values across multiple regions, the wide-table schema permits both horizontal output formats 

(e.g., SELECT MAX("REGION_01_TEMP"), MAX("REGION_02_TEMP"), ...) and vertical 

formats constructed via UNION ALL. Such variability can lead to inconsistent result structures. 

By contrast, the star schema naturally yields normalized, vertical outputs through GROUP BY 

region_name, which closely aligns with standard analytical query patterns commonly observed 

during LLM pre-training. This structural alignment reduces uncertainty in query formulation 

and improves result consistency. 

Third, the star schema reduces effective schema complexity. While the wide table requires 

the LLM to reason over 69 heterogeneous columns simultaneously, the star schema distributes 

this information across four semantically distinct tables connected by explicit foreign key 

relationships. This organization allows LLMs to leverage learned fact–dimension join patterns 

instead of relying on brittle inference over complex column naming conventions. As a result, the 

schema interpretation burden is reduced, leading to more reliable SQL generation. 
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6 Conclusions and Future Work 

This study proposed a data-centric approach to improve Text-to-SQL performance in 

manufacturing IoT environments. The core contributions are twofold: (1) a star schema–based 

data mart design that restructures wide-table IoT data into an LLM-friendly format, and (2) a 

TAG pipeline optimized for this structure, enabling natural language–based data access for 

shop-floor operators without SQL expertise. 

Experimental results demonstrated that the proposed Star-TAG framework outperformed 

conventional wide-table–based approaches in terms of accuracy, efficiency, and robustness. 

Notably, schema optimization enabled resource-constrained open-source models to achieve 

performance comparable to larger commercial models. These findings suggest that schema 

design optimization represents a more effective and sustainable performance improvement 

strategy than prompt engineering or model scaling, offering practical possibilities for deploying 

on-premise AI systems in manufacturing environments subject to security and computational 

constraints. 

Despite these contributions, this study has several limitations. First, validation was 

conducted within a single industrial domain (MES) and on a single database platform 

(PostgreSQL); therefore, generalizability to diverse manufacturing processes and database 

environments requires further investigation. Second, although qualitative analysis of 

Interpretive Answer Generation was performed, systematic user studies involving shop-floor 

operators would strengthen the evaluation of response quality, usability, and decision-support 

effectiveness. 

Future research directions are as follows. First, query clarification mechanisms are required 

to resolve ambiguity in natural language queries by generating follow-up questions and refining 

user intent through dialogue. Second, to further enhance accessibility for shop-floor operators, 

the system can be extended with speech-based interfaces leveraging STT and TTS technologies, 

supporting hands-free interaction in operational environments. Third, beyond reactive question 

answering, the framework can be evolved into an autonomous monitoring agent capable of 

proactively detecting and reporting anomalous patterns in industrial data streams. 
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