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Abstract

An LLM-based Question Answering System over Relational Databases via Text-to-SQL

by Sol Jeong

Master of Science in Big Data Analytics
Graduate School of Kyung Hee University
Advised by Dr. Jae-Yoon Jung

As digital transformation accelerates in manufacturing, vast amounts of industrial Internet of
Things (loT) sensor data are being accumulated. However, enabling shop-floor workers without
Structured Query Language (SQL) expertise to query this data using natural language remains a
significant challenge. Although natural language interfaces powered by Large Language Models
(LLMs) have recently gained attention, conventional Text-to-SQL approaches for
manufacturing 10T data are hindered by wide-table schemas that expand the search space and
induce hallucinations, as well as by high-frequency time-series data that require costly
aggregation, thereby limiting real-time responsiveness. To address these challenges, this study
proposes Star-TAG, an LLM-based question answering framework that integrates star-schema—
based 10T data mart with a Table-Augmented Generation (TAG) pipeline. The framework
restructures wide-table 10T data into a star schema with time-based aggregation and employs
schema-aware prompting that explicitly models fact-dimension relationships for the LLM.
Experiments on real-world battery manufacturing data show that Star-TAG achieves 72.0%
execution accuracy on synthetic benchmarks, a 44.0 percentage-point improvement over wide-
table baselines, while reducing token usage by 51.1%. In addition, lightweight open-source
models attain performance comparable to commercial models under Star-TAG, indicating that
schema-driven optimization can mitigate model-scale limitations. These results demonstrate that
efficient LLM-based natural language interfaces can substantially enhance data accessibility for
shop-floor workers in manufacturing environments subject to security and computational

constraints.
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1 Introduction

Modem manufacturing is undergoing accelerated digital transformation through the
adoption of smart factories, leading to the accumulation of vast amounts of industrial Internet of
Things (loT) data on shop floors (Tao et al., 2019; Zhong et al., 2017). Although Human-
Machine Interfaces (HMIs) have been widely used to deliver operational information to workers
in such environments, it remains difficult for shop-floor personnel to directly access and
interpret insights from this massive volume of data (Kumar & Lee, 2022). This is because
conventional HMI dashboards cannot effectively address workers’ specific queries about
complex shop floor data (Mourtzis etal., 2022), and it is impractical to predefine and distribute
all potentially relevant data through fixed mobile or HMI interfaces.

Recently, large language models (LLMs) have enabled natural language—based question
answering (QA) systems for shop-floor applications via mobile devices and industrial
applications (Zhang et al., 2025). However, most existing studies focus on unstructured data
such as work instructions or equipment manuals (Keman Freire etal., 2024; Garcia et al., 2024),
or on general relational database (RDB) processing. In contrast, QA systems designed
specifically for high-frequency sensor-based 0T data—which are central to real-world
manufacturing operations—remain largely unexplored.

Although Text-to-SQL technigues have been extensively studied for natural language
access to RDB, directly applying them to manufacturing loT data introduces significant
challenges. First, sensor measurements are often stored in heterogeneous and schema-inefficient
formats, most notably in wide-table schemas in which tens to hundreds of similarly named
sensor attributes are arranged horizontally in a single table. Such designs substantially increase
the contextual complexity that LLMs must process and expand the search space for column
selection, thereby degrading Structured Query Language (SQL) generation accuracy (Li et al.,
2023; Leietal., 2024). As a result, LLMs may select incorrect columns or generate non-existent
attributes, leading to hallucinations (Cao et al., 2024; Qu et al., 2024).

Second, manufacturing 10T systems generate massive volumes of time-series data at sub-
second granularity. Although sensors may record values at millisecond or second intervals
(Wang et al., 2023), shop-floor workers typically require aggregated information over

meaningful time windows, such as “the average temperature of equipment X at 3 PM.” Under
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high-frequency storage schemes, even a simple one-hour query may involve scanning and
aggregating thousands of records, resulting in high latency and computational overhead.
Consequently, conventional Text-to-SQL approaches struggle to deliver responsive and reliable
QA forindustrial 10T data, limiting their practical applicability on the shop floor.

To overcome these challenges, this study proposes an LLM-based QA framework that can
reliably answer questions about industrial 0T data on shop floors. While existing Text-to-SQL
research has focused on improving models or prompting strategies given a fixed schema, this
approach adopts a data-centric methodology that proactively designs DB schemas optimized for
LLM reasoning (Zha etal., 2025). Specifically, sensor DBs stored in RDBs are restructured into
star schema-based data marts suitable for analysis (Kimball & Ross, 2013), and schema-aware
prompting strategies that are easier for LLMs to interpret are employed. As a result, Table-
Augmented Generation (TAG)—an end-to-end pipeline from natural language queries to SQL
generation and natural language responses—is implemented (Biswal et al., 2024), enabling
shop-floor workers without SQL expertise to query industrial data and obtain analytical
responses in natural language.

To empirically validate the effectiveness of the proposed system, a QA system was built
using one week of operational data from battery manufacturing equipment. After transforming
the raw loT data from the RDB into a star schema-based data mart, the QA system was
implemented using both a commercial LLM accessed via APl (GPT-4.1) and open-source
LLMs deployable on-premise (Gemma3-12B and Qwen3-4B). For evaluation, experiments
were conducted using a real-world shop-floor use-case dataset and a synthetic dataset generated
following the OmniSQL methodology (Li et al., 2025). The results indicate that, across all three
models, the proposed system achieved an average 44.0 percentage-point improvement in
execution accuracy over wide-table baseline while reducing token usage by 51.1%. Furthermore,
the success rate after self-correction reached 100% in the star-schema environment,
demonstrating that schema design improves not only accuracy but also system robustness.

The main contributions of this study are as follows:

* Data-centric Text-to-SQL approach: Unlike existing research that focuses on model and
prompt engineering, this study presents a new direction for enhancing LLM performance

through schema-driven optimization. The impact of star schema-based data marts on LLM
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SQL generation accuracy, token efficiency, and error recovery is empirically demonstrated.

* Application of the TAG pipeline to manufacturing 10T domain: An end-to-end QA
system encompassing natural language answer generation beyond SQL generation is
applied to manufacturing loT data, enabling shop-floor workers to perform data-driven
decision making without SQL expertise.

* Empirical validation and practical guidelines: The effectiveness of the methodology is
demonstrated through both use-case-based evaluation on real Manufacturing Execution
System (MES) data and quantitative benchmarking using OmniSQL-based synthetic
datasets. Additionally, common error types observed in the experiments are analyzed, and

actionable guidelines for real-world deployment are provided.

The remainder of this paper is organized as follows. Chapter 2 reviews related work on
LLM-based industrial assistants and Text-to-SQL. Chapter 3 presents the system architecture,
star schema-based data mart design strategy, and TAG pipeline including Schema-Aware
Prompting. Chapter 4 describes the experimental setup, reports performance comparisons, and
presents the implemented system interfaces. Chapter 5 analyzes Text-to-SQL error patterns with
self-correction mechanisms and discusses the structural factors underlying Star-TAG's
performance improvements. Finally, Chapter 6 presents conclusions and future research

directions.



2 Related Work
2.1 Digital Intelligent Assistance based on Large Language Model

Digital Intelligent Assistants (DIAs) are intelligent software applications that provide
services through natural language interaction with users (Maedche et al., 2019; Wellsandt et al.,
2022). DIAs consist of a combination of conversational agents (McTear, 2022) and technology -
based agents, which interpret user intent and achieve task objectives by integrating with external
systems (Wellsandt et al., 2022).

The technical components of DIAs are defined as five core elements (Wellsandt et al.,
2022): Speech-to-Text (STT) for voice input recognition, natural language understanding for
intent parsing, dialog management for conversation flow control, extemal information system
connections for data access, and Text-to-Speech (TTS) for response delivery. Among these,
connectivity to extemal information systems is a key factor that determines the practical
capability and intelligence level of DIAs (Wellsandt et al., 2022). In manufacturing
environments, data-driven decision making on the shop floor becomes possible only when DIAs
can access production DBs, equipment status, and operational metrics.

Traditional DIA research in industrial settings has primarily focused on predictive
maintenance and worker support. Wellsandt et al. (2022) proposed a five-stage predictive
maintenance framework—Sense-Detect-Predict-Decide-Act—where DIAs served as interfaces
to communicate analysis results from rule-based systems to maintenance personnel. However,
this approach relied on predefined rules and rigid workflows, limiting its ability to flexibly
respond to diverse natural language queries.

Recent advances in LLMs have enabled more flexible DIA implementations in
manufacturing environments. Yuan et al. (2025) proposed “Chat with MES,” demonstratin g that
MESs can be operated through natural language interfaces. Colabianchi et al. (2024) evaluated
the applicability of LLM-based DIAs in assembly-line manufacturing environments. These
studies showed that LLMs can interpret ambiguous user inputs and decompose complex tasks
into multi-step actions.

However, existing LLM-based DIA research has primarily addressed system control
interfaces or unstructured document retrieval, and natural language QA over loT sensor data

stored in RDB remains underexplored. Shop-floor operators and managers require insights into
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equipment performance, product quality, and production trends without SQL expertise. To
achieve this, DIAs must be able to translate users’ natural language questions into executable
DB queries and retum accurate analytical results. This study addresses this gap by implementing
the DIA’s external information system connection as Text-to-SQL-based natural language data

querying mechanism.

2.2 Table-Augmented Generation via Text-to-SQL

Recently, Retrieval-Augmented Generation (RAG) technology has been widely utilized for
QA on unstructured documents (Lewis et al., 2020). However, since RAG relies on vector
similarity-based document retrieval, it cannot accurately perform relational operations such as
aggregation, filtering, and joins on structured data stored in RDBs. Therefore, accurate TAG
requires a mechanism that interprets users’ intent from natural language and generates SQL
queries.

Technology for querying structured data in RDBs through natural language has been
studied for a long time. The core technology, Text-to-SQL, is a task that converts users’ natural
language questions into executable SQL queries (Hong et al., 2025). This technology originated
from rule-based systems in the 1970s, evolved through LSTM and Transformer-based deep
leaming approaches in the 2010s, and advanced to methods leveraging pre-trained language
models (PLMs) such as BERT and RoBERTa. Recently, the emergence of LLMs has
established a new paradigm in the Text-to-SQL field.

Key techniques for LLM-based Text-to-SQL include In-context Leaming (ICL) (Brown et
al., 2020) and Chain-of-Thought (CoT) (Wei et al., 2022) prompting. ICL guides the model to
leam SQL generation patterns by including a few examples in the prompt, while Co T enhances
reasoning accuracy by decomposing complex query generation processes into explicit steps. The
performance of these techniques is evaluated through the Spider (Yu etal., 2018) and BIRD (Li
et al., 2023) benchmarks. Spider is a cross-domain benchmark containing over 200 DBs, while
BIRD raises practical difficulty by including questions that require real DB environments and
external knowledge.

However, Text-to-SQL only addresses the stage of converting natural language questions
to SQL and does not cover the end-to-end QA pipeline that retums results to users in natural
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language. To address this limitation, Biswal et al. (2024) proposed TAG. TAG is a framework
that integrates the entire process of natural language-based data querying, consisting of three
stages: (1) Query Synthesis — converting natural language questions to SQL queries
(corresponding to Text-to-SQL), (2) Query Execution — executing queries to extract data, and
(3) Answer Generation — producing natural language responses based on extracted data. In other
words, while Text-to-SQL was limited to retuming tables or scalar values, TAG delivers user-
friendly natural-language answers, enabling shop-floor workers without SQL knowledge to gain
insights from data.

Since this study targets structured loT sensor data, it adopts the Text-to-SQL-based TAG
approach. When applying the TAG paradigm to manufacturing 10T DBs, the inherent schema
complexity becomes problematic, hindering LLM schema comprehension and inducing
hallucinations. To address this, this study ensures TAG reliability by building a TAG pipeline
that applies Text-to-SQL after reducing schema complexity via star schema-based data mart
design (Kimball & Ross, 2013), which has been widely utilized for analytical query

optimization.



3 Framework
3.1 Requirements

This chapter introduces a framework for natural language QA on manufacturing loT sensor
data and defines three key design requirements that the system must satisfy. These requirements
are derived from the limitations of existing Text-to-SQL approaches and guide the subsequent
data martand TAG pipeline design.

Easy query for non-experts. The system must enable shop-floor workers without SQL
expertise to query data using natural language and obtain analytical answers. Existing Text-to-
SQL systems often only retum query execution results as tables or scalar values. However, since
shop-floor workers are not accustomed to interpreting raw SQL outputs, context-aware natural
language responses are required rather than simple numerical listings. To address this, chapter
3.4 introduces a TAG pipeline with an Interpretive Answer Generation technigque that converts
SQL execution results into contextualized natural language responses.

Accurate query results and relevant answer. The QA system must generate correct SQL
queries for users’ natural language questions and return accurate execution results. When
applying existing Text-to-SQL approaches to 10T data, hallucinations occur because LLMs fail
to identify correct attributes or generate non-existent columns in wide-table schemas, where tens
to hundreds of attributes are listed in a single table. Therefore, to reduce the LLM search space
and improve schema comprehension, chapter 3.3 proposes a star schema-based data mart design.

Low token usage and fast response time. The QA system must minimize prompt token
consumption and query processing latency. 10T sensors in manufacturing processes collect data
at sub-second resolution, resulting in massive time-series datasets. When such high-frequency
data are queried directly, even simple aggregate queries require scanning thousands of records,
and large numbers of tokens are needed to encode wide-table schemas in prompts. This leads to
increased response latency and API costs. To address this, chapter 3.3 introduces time-based
pre-aggregation (Temporal Aggregation) and compact schema representations to improve

efficiency.

3.2 System Overview
Star-TAG is a framework that integrates a star schema-based data mart with a TAG
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pipeline. As shown in Figure 1, the proposed framework consists of two phases: the build-time
phase, in which the IoT data mart is constructed, and the run-time phase, in which TAG is
executed via Text-to-SQL.

Build-time: Design of an JoT Data Mart Run-time: Table -Augmented Generation (TAG) Pipeline
Qo P 5
ThA ((@1,))) Fem 0
ﬁiﬁ oo — @ Natural Language Question
Industnial IoT Sensors XS ‘
__'.—
Raw Operational DB (OLTP) ATAgent (LLM -based)
(High-fequency, complex wide table) Sct Knowledge - N o=
Injection —_— ema-Aware ~ 1
jeciion — b dv Bl [ Tonsos0r. )
@Q ETL Process y “ 3 =
B J (Temporal aggregation) /  SQL Execution t
/ = —[ Result SQL j
-~
IoT Data Mart (Star Schema) ! - .
/" Table Retrieval | Interpretive ¢ (=]
dim_time fact_sensor_hourly dim_region - ™ | Result Table ﬁ Answer |@|
J ~ Generation —
& TS '
/
segion_id /
sensor_id l—k—l
avg_value
P =
dim_equipment min value dim_sensor
L Supporting
EEE: 5 o Repone
Dimension Tables (Context) |

Figure 1. The Star-TAG framework for industrial loT data analysis via data mart—-augmented
generation.

Build-time: Design of an loT Data Mart. In this phase, a data mart tailored for natural
language QA is constructed from the original operational DB. 10T sensor data from
manufacturing shop floors are generated at high frequency by Online Transaction Processing
(OLTP) systems and are typically stored in RDBs as wide tables with complex semantics. The
Extract, Transform, and Load (ETL) process applies time-based aggregation (Temporal
Aggregation) to this raw data, transforming it into analysis-ready representation. The
transformed data are loaded into a data mart with a star-schema structure, consisting of a central
Fact table (sensor measurements) surrounded by Dimension tables that provide contextual
information such as time, location, equipment, and sensor attributes.

Run-time: Table-Augmented Generation (TAG) Pipeline. In this phase, users’ natural

language queries are processed based on the prestructured data mart. The two phases are
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connected through Schema Knowledge Injection, whereby the data mart’s schema and semantic
information are injected into the run-time prompt. When shop-floor workers submit questions in
natural language, the LLM-based Agent generates responses through the TAG pipeline—Query
Synthesis, Query Execution, and Interpretive Answer Generation—as illustrated in the right-

hand panel of Figure 1.

3.3 Design ofan loT Data Mart

The MES DB on shop floors is an OLTP system for real-time transaction processing, and
performing analytical queries directly on the operational DB is inappropriate from the
perspectives of system load and stability. The analytical QA targeted by this study requires
Online Analytical Processing (OLAP) characteristics such as aggregation, filtering, and
multidimensional analysis. To meet these requirements, a dedicated data mart optimized for
OLAP workloads is designed.

When utilizing the original MES DB directly for Text-to-SQL, two problems arise. First,
massive volumes of rows accumulate due to high-frequency, sub-second sensor data. Second,
the DB has a wide-table schema, in which all sensor measurements are stored as columns in a
single table. These characteristics significantly expand the LLM’s search space and hinder
schema comprehension, thereby degrading SQL generation accuracy. To address these problems,
this study restructures the data repository by transforming the wide-table schema into a star
schema.

3.3.1 Star Schema for l10Ts

To store IoT data in RDBs, the wide-table schema, which integrates multiple sensor
attributes into a single table, is commonly used. A wide-table schema is a data model that stores
each sensor measurement as a separate column and is widely used in sensor-cloud and loT
platforms (Ma & Yang, 2014; Blondheim, 2025). In industrial IoT environments, hundreds of
sensors installed on a single piece of equipment generate data concurrently, making it common
to store area-specific sensor measurements as separate columns (Wang et al., 2023). For
example, in a battery dry room, temperature, differential pressure, and supply-fan speed for each

region are stored as individual columns. The original data in this study also follows this
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structure, with region, sensor type, and measurement semantics encoded in column names (e.g.,
REGION_01_TEMPERATURE_PV, REGION 01 DIFF_PRESSURE_UPPER,
REGION_01_SUPPLY_FAN_RPM). In such a flat schema, the LLM must identify columns
relevant to the question among numerous similarly named attributes, which can lead to
hallucinations in which incorrect columns are selected.

The star schema is a standard data warehouse modeling technique consisting of a central
Fact table surrounded by Dimension tables. The Fact table stores measurements that are the
subject of analysis, while Dimension tables define the context in which those measurements
occurred. In this study, hourly aggregated sensor statistics are modeled as Facts, and four
analytical axes constituting the measurement context are modeled as Dimensions (see Figure 2).
The time dimension (dim_time) specifies time attributes of measurement points, the equipment
dimension (dim_equipment) specifies equipment information, the region dimension
(dim_region) specifies specific location information within equipment, and the sensor
dimension (dim_sensor) describes the sensor types deployed at each location. Raw sensor

readings are aggregated into hourly maxima, minima, and averages and stored in the Fact table.

Wide Table Wide table data
[ measurement |2 creDate | = REGION_( REGION_( REGIOM « REGI » REC »

2 e
2484 1,49 7.38 m 14

StarSchema ‘ Fact table data
o o - v |25 v | 2 vt |t v

£ dim_sions

time jd — 2 ) 2 2 a0

Dimension table data

sens sensors ¥
[0 g v <
e v

Figure 2. Schema transformation from a wide-table format to a star schema for industrial

loT sensor data.
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The choice of a star schema is motivated by its compatibility with LLM-based SQL
generation. First, hierarchical dimension designs such as Snowflake Schema increase JOIN
depth and complicate query synthesis for LLMSs. In contrast, the star schema requires only
single-hop joins between the Fact and Dimension tables, resulting in simpler and more
predictable SQL structures. Second, LLMs have been exposed to OLAP-style query pattems—
filtering by Dimensions and aggregating from Facts—during pre-training, making the fact-
dimension separation of the star schema naturally aligned with their learned representations.

This star-schema design improves Text-to-SQL performance in two ways. First, schema
complexity is significantly reduced. As shown in Figure 2, a wide table with 69 columns used in
this study is restructured into four Dimension tables and one Fact table, substantially
simplifying the schema information that the LLM must process in the prompt Second, the
explicit separation of roles between Fact and Dimension tables clarifies SQL generation patterns.
In analytical queries, Dimension tables supply filtering conditions (the SQL WHERE clause)
and grouping criteria (the SQL GROUP BY clause), while the Fact table becomes the target of
aggregate functions (e.g.,, MAX, MIN, AVG, and SUM). This clear role separation guides the
LLM to select the correct JOIN path and aggregate syntax. Moreover, the star schema offers
superior extensibility: when new sensors or equipment are introduced, wide tables require costly
schema alterations (ALTER TABLE), whereas the star schema accommodates such changes by
adding rows to the relevant Dimension tables, thereby preserving schemastability.

3.3.2 Temporal Aggregation of IoT Data

To address the data-volume challenge, time-based aggregation (Temporal Aggregation) is
applied during the Extract, Transform, and Load (ETL) process. The original data records
sensor readings at sub-second resolution, yielding approximately 148,000 records over seven
days. These data are aggregated into one-hour windows and transformed into summary statistics,
including mean, maximum, minimum, and null ratio for each interval. Through this process, the
dataset is reduced to approximately 3,700 records, achieving nearly a 40-fold reduction in
physical search space.

The rationale for adopting a one-hour aggregation interval is as follows. The queries that
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shop-floor workers and managers typically require are aggregated values over specific time

points or intervals, such as “the average temperature of equipment X at 3 PM" or “the time

period when the highest pressure occurred yesterday.” Directly querying raw sub-second data is
only necessary in specialized scenarios, such as anomaly detection or fine-grained diagnostics.
The one-hour resolution aligns with the temporal granularity commonly used on the shop floor,
including shift-based analysis, daily trend monitoring, and time-window comparisons. This pre-
aggregation enables the LLM to operate on meaningful statistical units rather than individual
measurements, allowing analytical queries to be processed with simple SELECT statements. For
example, the question “What was the average temperature of equipment X last week?”” would
otherwise require on-the-fly aggregation over hundreds of thousands of records, whereas in the
data mart it can be answered by directly querying precomputed hourly averages. This simplifies

SQL generation and reduces error likelihood by eliminating unnecessary aggregation operations.

3.4 Table-Augmented Generation Pipeline

The TAG pipeline answers users’ natural language queries based on the preconstructed
data mart. The build-time phase and run-time phase are connected through Schema Knowledge
Injection, whereby schema metadata from the data mart constructed during build-time—
including table definitions and foreign key relationships—is extracted in Data Definition
Language (DDL) format and injected into the LLM prompt at run time, enabling the LLM to
comprehend the data mart structure and generate accurate SQL queries.

When shop-floor workers submit questions in natural language, the LLM-based agent

produces responses through the three-stage pipeline illustrated in Figure 1:

Query Synthesis. The user’s natural language question is translated into an executable
SQL query. This stage consists of two substeps. First, in Schema-Aware Prompting, a prompt is
constructed by combining the DDL-based schema description with the user’s question. Then, in
Text-to-SQL generation, the constructed prompt is fed to the LLM to produce an SQL query.

Query Execution. The generated SQL query is executed against the IoT data mart, and the
resulting table is retumed. The star-schema design ensures efficient joins between Fact and

Dimension tables, enabling low-latency query processing.
12



Interpretive Answer Generation. The returned result table is transformed into a natural
language answer. In this stage, the user’s original question and the query results are prov ided to
the LLM, which generates a contextualized natural language response that includes
interpretation of the results along with supporting tables for reference.

In the Interpretive Answer Generation stage, results obtained through query execution are
converted into user-friendly natural language answers. EXisting Text-to-SQL systems often only
retum query execution results in tabular form. However, since shop-floor workers are not
accustomed to interpreting raw SQL outputs, context-aware responses are required rather than
simple numerical listings. Accordingly, this study proposes an Interpretive Answer Generation
module to produce responses that include both interpretation and contextual information about
guery results.

Interpretive Answer Generation is designed to generate responses containing four elements.
First, a direct answer to the question is provided with appropriate units (e.g., “The average
temperature of REGION_01 is 96.3°C”). Second, contextual interpretation of the result is added
(e.g., “This is within the normal operating range”). Third, when multiple values are returned,
trend analysis is performed (e.g., “There is a gradually increasing trend from August 1st to 4th”).
Fourth, anomalies or actionable alerts are presented when applicable. Queries on the shop floor
are systematically categorized into types such as single-value lookup, period-based trends, inter-
zone comparisons, statistical verification, and threshold-based filtering. Accordingly, an
adaptive few-shot strategy is applied that dynamically selects response examples based on the
detected question type. Specifically, the question type is identified via keyword-based
classification, and only type-relevant examples are included in the prompt This approach
reduces prompt token usage while eliciting responses that are better aligned with the

characteristics of each question type.
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Prompt Template 1. Prompt for Interpretive Answer Generation

You are an assistant for shop-floor workers.

## Question
{question}

## SQL Result
{result_table}

## Response Guidelines

1. Direct answer: State values with units

2. Interpretation: Normal/high/low, trend, or comparison
3. Keep concise (2-3 sentences), no technical jargon

## Example for few-shot strategy

{selected_example}

Response:

14




4 Implementation and Experiments
4.1 Experimental Setup

Experiments were conducted using three LLMs: GPT-4.1 (accessed via a commercial API
from OpenAl), Gemma3-12B (a Google-developed open-source model with 12 billion
parameters), and Qwen3-4B (an open-source model with 4 billion parameters developed by
Alibaba). The inclusion of lightweight open-source models, often referred to as small language
models (SLMs), alongside a commercial LLM was motivated by deployment constraints
commonly observed in manufacturing environments, where strict security policies, air-gapped
networks, and data govemance requirements often prohibit outbound API calls. Under such
conditions, on-premise deployable SLMs represent a practical and scalable altemative for
industrial applications.

The open-source models were executed on a server equipped with two NVIDIA TITAN
RTX GPUs, providing a total of 48 GB of VRAM. For data storage, PostgreSQL 16.3, an open-
source relational database management system, was employed. To ensure reproducibility and
fair comparison, identical generation parameters were applied across all models (temperature =
0; max_tokens =4,096; seed =42).

The primary objective of this experimental study was to evaluate the impact of schema
design on Text-to-SQL performance, specifically comparing wide-table and star schema-based
data mart configurations. To this end, two complementary evaluation datasets were constructed.

Query set A: Industry requirements-based queries. Twenty questions were constructed
based on a User Requirements Specification (URS) provided by an industrial partner. The URS
reflects realistic information needs of shop-floor operators and engineers in a manufacturing
environment. These questions were categorized into four types: simple lookup (5), conditional
filtering (5), aggregation and statistics (5), and complex join and comparison (5). Because
identical questions were posed to both schemas, Query set A enables controlled comparison of
schema impact while holding query content constant.

Query set B: Synthetic benchmark queries. This dataset was generated using the data
synthesis methodology of OmniSQL (Li et al., 2025). OmniSQL generates query data at four
difficulty levels: Simple, Moderate, Complex, and Highly Complex. The Simple level was
selected because typical analytical queries in manufacturing environments—such as sensor
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lookups and threshold-based filtering—primarily involve SELECT operations with
straightforward WHERE conditions. Since OmniSQL generates question—-SQL pairs
conditioned on the input schema, 94 questions were independently generated for each schema.
This design allows Query set B to serve as a schema-aware benchmark that complements the

requirements-based evaluation of Query set A.

Text-to-SQL performance was evaluated using four metrics, each capturing a distinct
aspect of system quality:

Execution Success Rate (ESR): The proportion of generated SQL queries that execute
successfully on the database without syntax or execution errors. ESR measures the LLM’s
ability to produce syntactically valid and executable SQL, serving as a baseline indicator of
guery generation reliability.

Execution Accuracy (EX): A Text-to-SQL evaluation metric proposed in the BIRD
benchmark (Li et al.,, 2023). EX determines whether the generated SQL and the ground-truth
SQL retum identical result sets when executed on the same database. Unlike the traditional
Exact Match (EM) approach, which requires exact string matching of SQL queries, EX
evaluates semantic equivalence at the execution level, allowing structurally different but
logically equivalent SQL queries to be counted as correct.

Token Usage (TU): The total number of tokens consumed during SQL generation (input +
output). TU reflects the efficiency of schema representation and SQL generation, directly
impacting API costs for commercial models and context window utilization for resource-
constrained deployments.

Response Time (RT): The elapsed time from natural language question input to SQL
generation completion. RT assesses the system's suitability for interactive shop-floor
applications, where near-instantaneous feedback is required to support effective decision
making by shop-floor operators.
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4.2 Experimental Results

To isolate the effect of schema design, the proposed Star-TAG framework was compared
against a wide-table baseline. Both configurations utilized the same industrial loT data
repository and were evaluated using an identical TAG pipeline, differing only in the underlying
data schema design. Table 1 summarizes the performance comparison across all models and
query sets.

Query set A, constructed based on the URS, was applied to all three LLMSs for comparison
(Table 1, Query set A). Across all models, Star-TAG consistently outperformed the wide-table
baseline in both execution reliability and semantic accuracy. In terms of Execution success rate
(ESR), Star-TAG achieved 90.0-95.0%, compared to 55.0-95.0% for the wide table, with
improvements of up to 40.0 percentage points observed for Gemma3-12B. For Execution
Accuracy (EX), the improvements were more pronounced: Star-TAG achieved 55.0-70.0%,
whereas the wide table achieved only 5.0-30.0%, representing gains of 35.0 to 65.0 percentage
points across the three models. Token usage decreased by 21.9-36.7%, demonstrating the
efficiency of the compact star schema representation. Response time exhibited model-dependent
behavior, with no consistent trend observed across configurations.

For Query set B, the 94 question—SQL pairs generated for each schema were applied to all
three models (Table 1, Query set B). Star-TAG achieved Execution Accuracy values ranging
from 66.0% to 75.5%, compared to 18.1-38.3% for the wide table, representing gains of 36.2 to
57.4 percentage points across the three models. Execution success rate also improved
consistently, with Star-TAG achieving 97.9-100.0%, compared to 88.3-97.9% for the wide
table. A key finding emerges from the substantial gap between ESR and EX in the wide-table
condition. Despite achieving relatively high ESR (88.3-97.9%), wide table’s EX remained low
(18.1-38.3%). This disparity indicates that a substantial proportion of generated queries
executed successfully but retumed incorrect results, suggesting that LLMs struggle to reliably
select the correct columns among numerous similarly named attributes in wide-table schemas, a
phenomenon commonly referred to as column selection hallucination.
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Table 1. Performance comparison of Text-to-SQL results

GPT-4.1 (1,800B)? Gemma3 (12B) Qwen3 (4B)
Dataset MetricD) - - -
Wide-table Star-TAG Improve. Wide-table Star-TAG Improve. Wide-table Star-TAG Improve.
ESR [%] 95.00%) 95.00 - 55.00 95.00 40.00 65.00 90.00 25.00
EX [%] 30.00 65.00 35.00 5.00 70.00 65.00 5.00 55.00 50.00
Query set A
Avg. TU [#] 1,832 1,160 672 1,792 1,201 591 1,879 1,467 412
Avg. RT [s] 6.20 5.31 0.89 9.56 9.61 -0.05 11.35 12.75 -14
ESR [%] 97.90 100.00 2.10 88.30 97.90 9.60 88.30 97.90 9.60
EX [%] 38.30 74.50 36.20 27.70 66.00 38.30 18.10 75.50 57.40
Query set B
Avg. TU[#] 1,860 848 1,012 1,649 772 877 1,784 969 815
Avg. RT [s] 6.47 6.85 -0.38 5.66 3.18 248 9.90 6.93 2.97

D ESR: Execution success rate, EX: Execution accuracy, TU: Token usage, RT: Response time
2 The number of parameters is not publicly disclosed; the value is estimated.
3) Bold indicates the best performance in each row.
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A particularly notable result is that Qwen3, despite having the smallest parameter size (4B),
achieved the highest Execution Accuracy (EX) of 75.5% under Star-TAG—comparable to, and
marginally exceeding, GPT-4.1 (74.5%). This finding suggests that schema-driven optimization
can effectively compensate for model-scale limitations, enabling smaller models to achieve
competitive Text-to-SQL performance. In terms of token efficiency, Star-TAG consistently
reduced token usage across all models, with reduction rates ranging from 45.7% for Qwen3 to
54.4% for GPT-4.1. This reduction can be attributed to the compact star schema representation,
which encodes equivalent semantic information in fewer tokens than the wide table's extensive

column listings.

4.3 System Interfaces

To demonstrate the practical deployability of the proposed framework, a web-based user
interface was implemented. This interface enables shop-floor operators without SQL expertise
to query industrial 10T data using natural language and receive contextualized analytical
responses in real time.

Figure 3 presents the system interface on (a) PC web and (b) mobile web platforms. The
PC web interface consists of four main components, as shown in Figure 3(a). First, the Settings
panel allows users to select the schema type (wide table or data mart) and the LLM model
(GPT-4.1, Gemma3, or Qwen3), enabling controlled comparison of schema design and model
behavior within a unified interface. Second, the Example Questions panel provides predefined
shop-floor-oriented queries. Third, upon user input, the system automatically classifies the
question type (e.g., single value, statistics, or time series) and retums a natural language
response with contextual interpretation, together with the corresponding query result table.
Fourth, the generated SQL query is explicitly displayed, ensuring transparency and traceability
of the data retrieval process for system auditing. The mobile web interface was designed to
support on-site decision making, reflecting the mobility requirements of shop-floor personnel,
as shown in Figure 3(b). This design enables workers to access analytical insights directly at the

point of operation without reliance on fixed terminals.
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Figure 3. Web-based user interfaces of the Star-TAG system.

The system supports multiple types of data queries commonly required in shop-floor
operations. For single-value queries, the system returns aggregated sensor measurements at
specified time points. For example, in response to the question "Let me know the average
temperature of REGION 1 on August 1, 2024," the system provides both the numerical value
(94.8°C) and an interpretation indicating whether it falls within the normal operating range (see
Figure 3(a)). For statistical queries, the system performs comparative analysis across multiple
regions or equipment. In response to the question "What was the average temperature recorded
in each zone on August 5, 2024?", the system presents average temperatures for each region in a
table and provides comparative analysis such as identifying the highest and lowest values across
zones (see Figure 3(b)). For time-series queries, the system retums sequential measurements
over specified periods to support trend analysis and anomaly detection.
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5 Discussion
5.1 Text-to-SQL Errorsand Self-Correction

This chapter examines how the structural properties of the star schema influence Text-to-
SQL reliability through error analysis and assesses the contribution of schema design to error
mitigation.

Across the 564 total experiments on Query set B (2 schemas x 94 synthetic queries x 3
models), the wide-table configuration resulted in 24 execution failures (8.5%), whereas the Star-
TAG configuration produced only 4 failures (1.4%). Figure 4 summarizes the distribution of

error types across models and schema configurations.
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Figure 4. Distribution of Text-to-SQL error types across models and schema configurations.

Hallucination—where the LLM generates references to non-existent columns—was the
dominant error type in both schemas; however, it occurred frequently in the wide-table
configuration (8 cases for Qwen3-4B and 5 cases for Gemma3-12B), while Star-TAG exhibited
substantially fewer occurrences (2 cases for Gemma3-12B and 1 case for Qwen3-4B). Notably,
GPT-4.1 exhibited no hallucination errors under either schema configuration, suggesting greater
robustness to schema complexity in larger models. These results indicate that the explicit fact—
dimension structure of the star schema effectively reduces column selection errors by
constraining the LLM’s search space, with particularly pronounced benefits for resource-
constrained open-source models.

Figure 5 illustrates the effectiveness of self-correction, in which PostgreSQL error

messages generated from failed SQL executions were fed back to the LLM to regenerate queries.
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Under the Star-TAG configuration, all four initial execution failures were resolved with a single
retry, achieving a 100% execution success rate across all models. In contrast, under the wide-
table schema, Gemma3-12B and Qwen3-4B retained 5 and 8 execution failures, respectively,
even after two self-correction attempts. Only GPT-4.1 achieved complete error resolution with a
single retry under the wide-table schema, indicating that higher-capacity models can partially

mitigate the impact of schema complexity.
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Figure 5. Error counts across self-correction iterations.

This disparity in recovery performance can be attributed to differences in schema
complexity. The Star-TAG schema contains only 12 columns in tofal; therefore, even when
hallucination occurs, the correct column name can often be inferred from the schema context
provided alongside the database error message (e.g., “‘column X does not exist™). In contrast, the
wide-table schema comprises 69 columns with numerous similarly named fields, making it
difficult for the LLM to identify the intended column based on the error message alone.
Consequently, Star-TAG not only reduces the frequency of execution errors but also facilitates
effective error recovery through self-correction, resulting in higher reliability for practical

deployment in manufacturing environments.
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5.2 Why Star-TAG Improves Text-to-SQL Performance

This chapter analyzes the structural factors through which the star schema design
underlying Star-TAG improves Text-to-SQL performance. Three key mechanisms are
identified: temporal expression clarity, output format consistency, and schema complexity
reduction. First, the star schema enhances the clarity of temporal expressions. In the wide-table
configuration, temporal conditions such as "from 10 AM to 12 PM" can be translated into
multiple semantically equivalent but syntactically different SQL formulations, including
timestamp range predicates (e.g., "CreDate" >='2024-08-01 10:00:00' AND "CreDate" < '2024-
08-01 12:00:00"), EXTRACT-based conditions (e.g., EXTRACT(HOUR FROM "CreDate")
BETWEEN 10 AND 12), or date_trunc-based expressions. This syntactic variability increases
the likelihood of mismatch between LLM-generated queries and ground-truth SQL—even when
both are semantically correct. In contrast, the star schema provides an explicit and discrete time
dimension (e.g., dim_time.hour BETWEEN 10 AND 12), thereby reducing representational
ambiguity and guiding the LLM toward a more consistent formulation.

Second, the star schema promotes consistency in output structure. When aggregating
values across multiple regions, the wide-table schema permits both horizontal output formats
(e.g., SELECT MAX("REGION_01_TEMP"), MAX("REGION_02_TEMP"), ...) and vertical
formats constructed via UNION ALL. Such variability can lead to inconsistent result structures.
By contrast, the star schema naturally yields normalized, vertical outputs through GROUP BY
region_name, which closely aligns with standard analytical query patterns commonly observed
during LLM pre-training. This structural alignment reduces uncertainty in query formulation
and improves result consistency.

Third, the star schema reduces effective schema complexity. While the wide table requires
the LLM to reason over 69 heterogeneous columns simultaneously, the star schema distributes
this information across four semantically distinct tables connected by explicit foreign key
relationships. This organization allows LLMs to leverage learned fact-dimension join patterns
instead of relying on brittle inference over complex column naming conventions. As a result, the

schema interpretation burden is reduced, leading to more reliable SQL generation.
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6 Conclusions and Future Work

This study proposed a data-centric approach to improve Text-to-SQL performance in
manufacturing 10T environments. The core contributions are twofold: (1) a star schema-based
data mart design that restructures wide-table 10T data into an LLM-friendly format, and (2) a
TAG pipeline optimized for this structure, enabling natural language—based data access for
shop-floor operators without SQL expertise.

Experimental results demonstrated that the proposed Star-TAG framework outperformed
conventional wide-table-based approaches in terms of accuracy, efficiency, and robustness.
Notably, schema optimization enabled resource-constrained open-source models to achieve
performance comparable to larger commercial models. These findings suggest that schema
design optimization represents a more effective and sustainable performance improvement
strategy than prompt engineering or model scaling, offering practical possibilities for deploying
on-premise Al systems in manufacturing environments subject to security and computational
constraints.

Despite these contributions, this study has several limitations. First, validation was
conducted within a single industrial domain (MES) and on a single database platform
(PostgreSQL); therefore, generalizability to diverse manufacturing processes and database
environments requires further investigation. Second, although qualitative analysis of
Interpretive Answer Generation was performed, systematic user studies involving shop-floor
operators would strengthen the evaluation of response quality, usability, and decision-support
effectiveness.

Future research directions are as follows. First, query clarification mechanisms are required
to resolve ambiguity in natural language queries by generating follow-up questions and refining
user intent through dialogue. Second, to further enhance accessibility for shop-floor operators,
the system can be extended with speech-based interfaces leveraging STT and TTS technologies,
supporting hands-free interaction in operational environments. Third, beyond reactive question
answering, the framework can be evolved into an autonomous monitoring agent capable of
proactively detecting and reporting anomalous patterns in industrial data streams.
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