

The 7th International Conference on Computational Intelligence and Intelligent Systems (CIIS 2024)

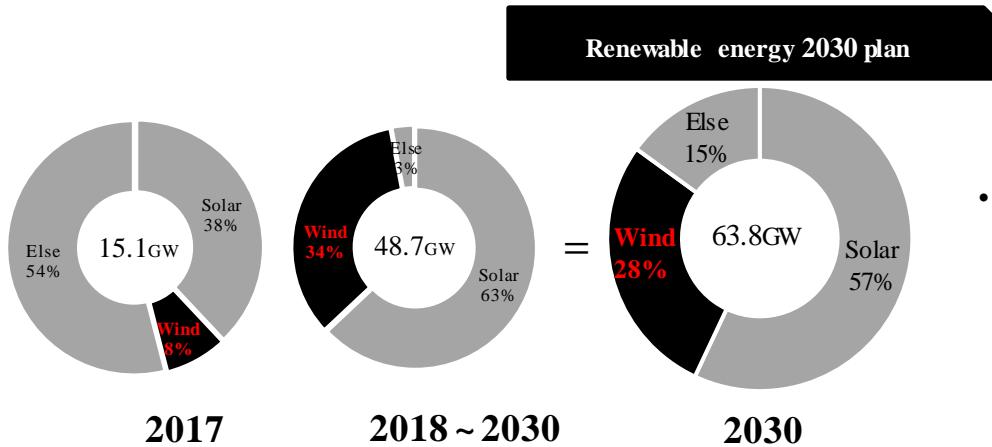
Wind power generation forecasting using explainable artificial intelligence in Jeju Island, South Korea

Nov. 23, 2024

Sol Jeong¹, Minsik Kim¹, Myeong-Gu Kang² and Jae-Yoon Jung^{1,2,*}

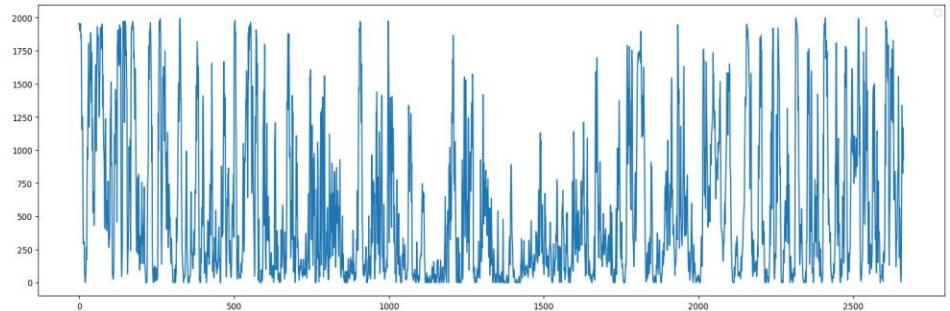
¹Dept. of Big Data Analytics, Kyung Hee University, Republic of Korea

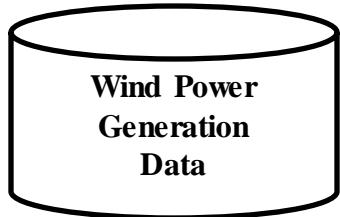
²Dept. of Industrial and Management Systems Engineering, Kyung Hee University, Republic of Korea



- **Introduction**
- **Dataset**
- **Framework**
- **Train and Explanation of WindTransNet**
- **Experimental Results**
- **Explanation – Attention and LIME**
- **Conclusions**
- **References**

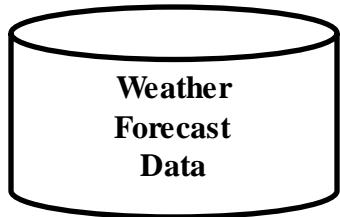
Introduction




Towards Global Eminence

- The importance of **renewable energy**, such as solar and **wind power**, is **growing** in efforts to achieve carbon neutrality and RE100.

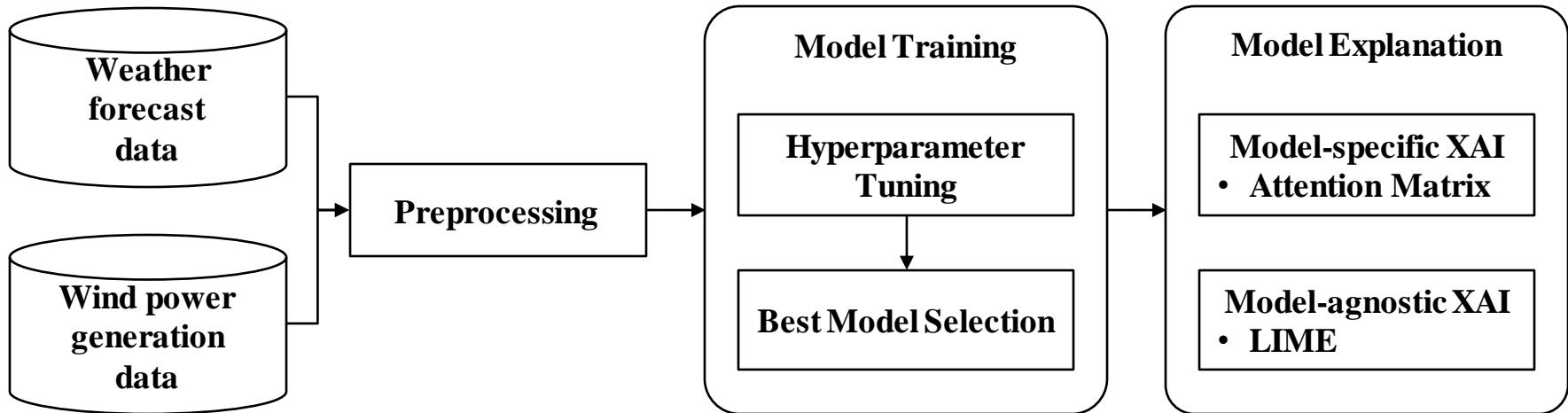
- Renewable energy generation is highly variable, → **Accurate generation forecasting** is important for **effective power supply planning**
- In this study, we aim to **interpret** the forecasting model trained with a **Transformer** architecture.



- 01.01.2014 ~ 31.12.2017 (4 years)
- Wind generation : Recorded every 10 minutes
- Location : Sungsan wind power plants at the east coast in Jeju island, South Korea

Data source of wind power plants

- 01.01.2014 ~ 31.12.2017 (4 years)
- Weather forecast : Announce starts at **2 am**
- Announce every 3 hours ($t = 2, 5, 8, 11, 14, 17, 20, \text{and } 23$)
- Total 8 time-zones



Data source of weather forecast:
Korea Meteorological Administration (KMA)

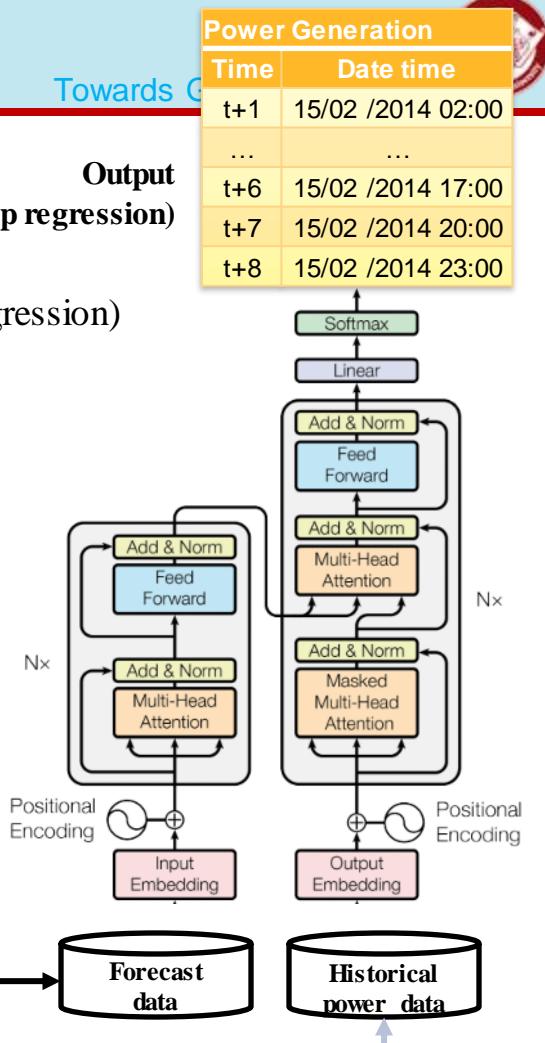
“Combined two datasets at 3-hour intervals. 8 samples for every day”

- Procedure for the train and explanation of wind power forecasting models using Transformer architecture (WindTransNet)

Train of WindTransNet

- Wind power forecast model based on weather forecasting and historical power generation

- Goal : to predict average wind power generation **per 1 day** (multi-step regression)

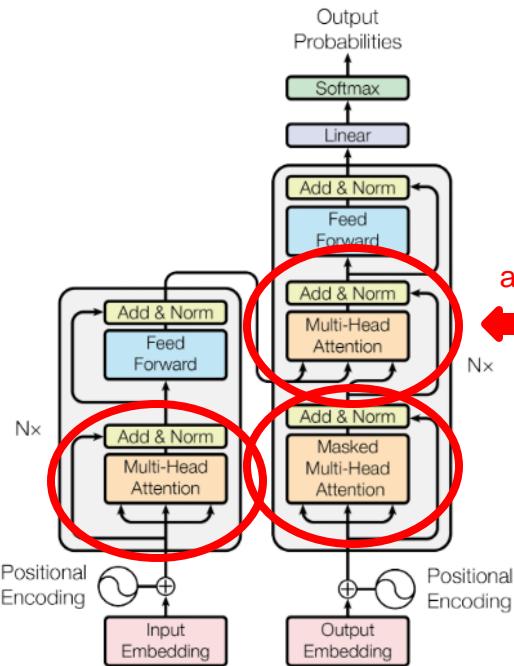

Weather Forecast Data		
(5 days)	Time	Date time
d - 3	t-31	11/02 /2014 02:00
...
	t-7	14/02 /2014 02:00
...
d	t-2	14/02 /2014 17:00
t-1	14/02 /2014 20:00	
t	14/02 /2014 23:00	
	t+1	15/02 /2014 02:00
...
d+1	t+6	15/02 /2014 17:00
t+7	15/02 /2014 20:00	
t+8	15/02 /2014 23:00	

Historical Power Generation Data		
(5 days)	Time	Date time
d - 4	t-39	10/02 /2014 02:00
...
	t-15	11/02 /2014 02:00
...
d - 1	t-10	13/02 /2014 17:00
t-9	13/02 /2014 20:00	
t-8	13/02 /2014 23:00	
t-7	14/02 /2014 02:00	
...
d	t-2	14/02 /2014 17:00
t-1	14/02 /2014 20:00	
t	14/02 /2014 23:00	

Towards G...

Power Generation	
Time	Date time
t+1	15/02 /2014 02:00
...	...
t+6	15/02 /2014 17:00
t+7	15/02 /2014 20:00
t+8	15/02 /2014 23:00

Output
(8-step regression)



Explanation of WindTransNet

Towards Global Eminence

- We focus on the **Multi-Head Attention** in the second sub-layer in the decoder.
- Because it allows to verify the **relationship between the decoder's input and the encoder's input**, and
- **the attention represents the final learning stage** for generating the outputs (before the fully connected layer).

Weather Forecast Data		
(5 days)	Time	Date time
d - 3	t - 31	11/02 /2014 02:00
...	...	
t - 7	14/02 /2014 02:00	
...	...	
d - 2	14/02 /2014 17:00	
t - 1	14/02 /2014 20:00	
t	14/02 /2014 23:00	
t + 1	15/02 /2014 02:00	
...	...	
t + 6	15/02 /2014 17:00	
t + 7	15/02 /2014 20:00	
t + 8	15/02 /2014 23:00	

Historical Power Generation Data		
(5 days)	Time	Date time
d - 4	t - 39	10/02 /2014 02:00
...	...	
t - 15	11/02 /2014 02:00	
...	...	
t - 10	13/02 /2014 17:00	
t - 9	13/02 /2014 20:00	
t - 8	13/02 /2014 23:00	
t - 7	14/02 /2014 02:00	
...	...	
t - 2	14/02 /2014 17:00	
t - 1	14/02 /2014 20:00	
t	14/02 /2014 23:00	

Results – Forecasting of WindTransNet

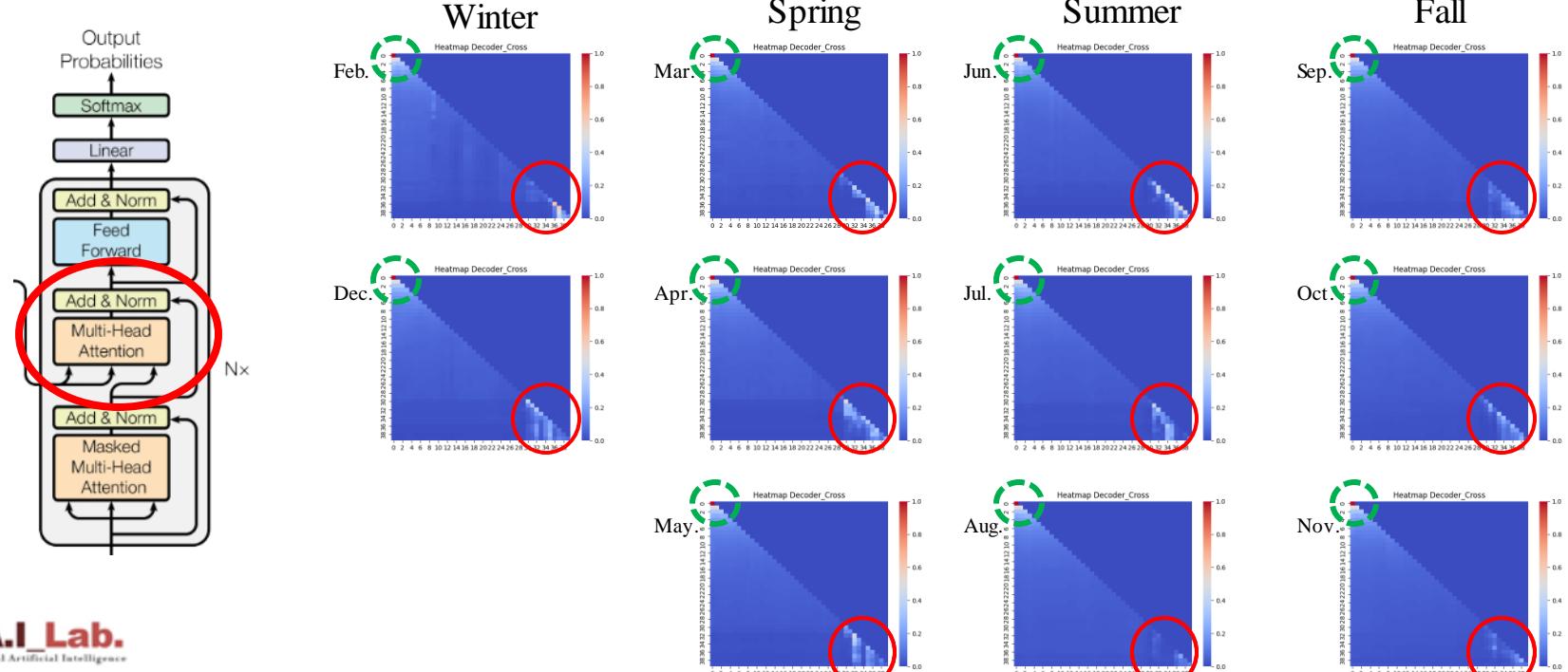
Towards Global Eminence

- **Four wind power forecasting models**
 - LSTM: the improved recurrent neural network used for handling sequential data
 - at-LSTM: the model that combines the **LSTM** with the **Attention** mechanism
 - WindTransNet-E: the transformer model using **an encoder without a decoder**
 - **WindTransNet-EDH (proposed):** the transformer model using **both an encoder and a decoder**

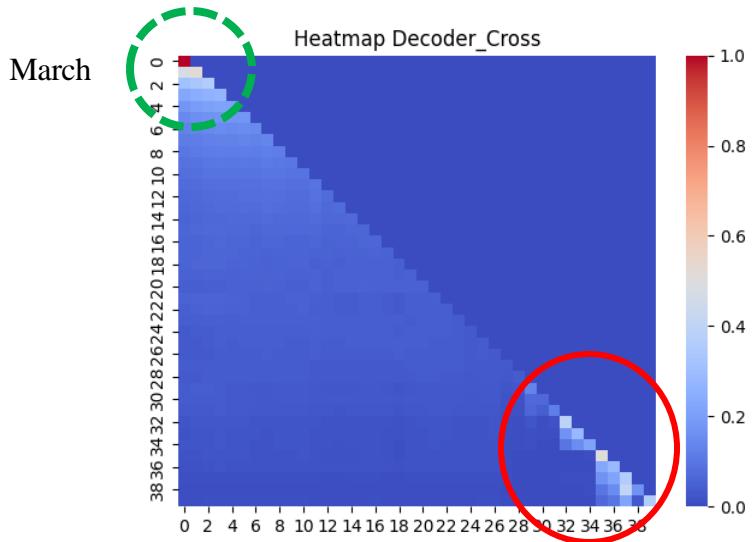
Performance of four wind power forecasting models

Wind forecasting model	RMSE		MAE		R ²	
	valid	test	valid	test	valid	test
LSTM	452.78	464.08	313.29	324.21	0.36	0.33
at-LSTM	467.22	474.47	319.36	332.65	0.32	0.30
WindTransNet-E	475.82	475.04	319.19	323.24	0.30	0.30
WindTransNet-EDH (proposed)	452.51	440.76	305.40	300.96	0.36	0.39

Hyperparameter tuning of WindTransNet-EDH


Hyperparameter	Search space
Time lag	$lag \in \{1, 3, 4, 5, 7, 14, 30\}$
Num. of layers	$l \in \{1, 2, 4\}$
Num. of heads	$h \in \{2, 4, 8\}$
Learning rate	0.001
Batch size	16
Optimiser	AdamW
Dropout	0.2
Max epochs	10,000
Loss function	MAE

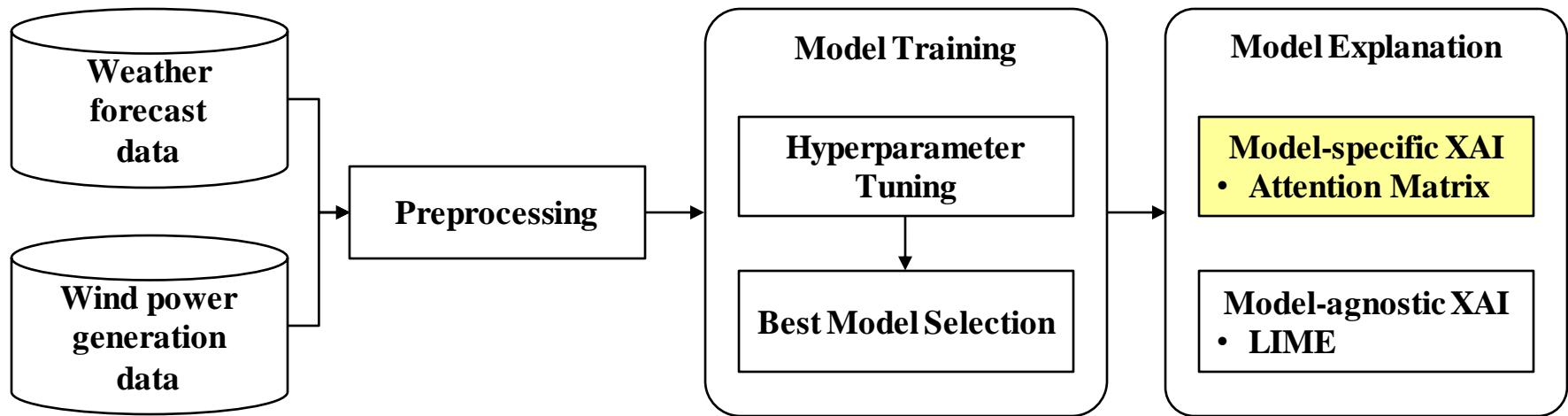
Results – Explanation of WindTransNet



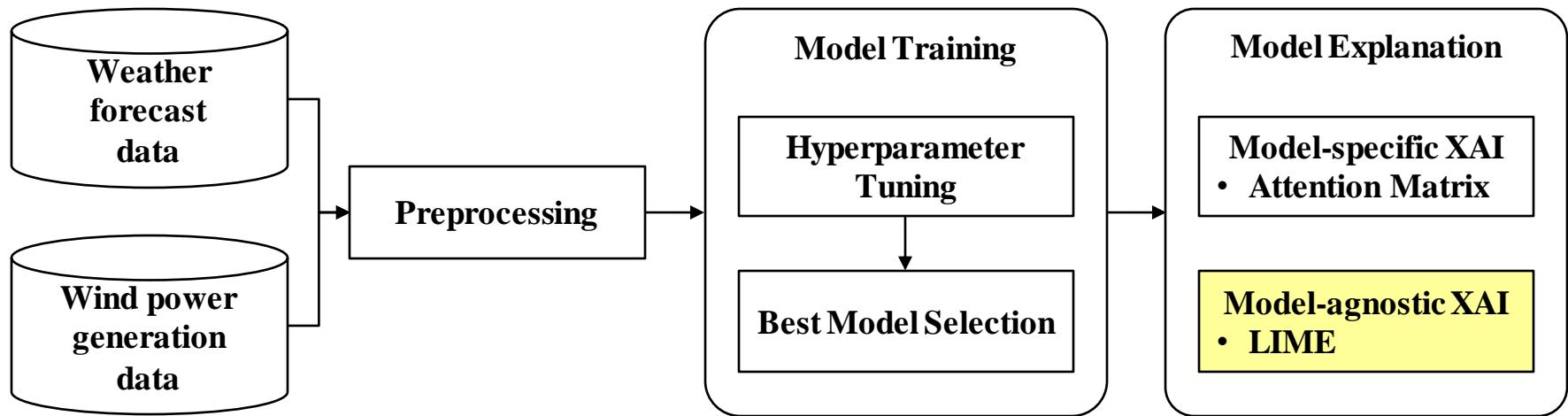
Towards Global Eminence

- We focus on the **Multi-Head Attention** in the second sub-layer in the decoder.

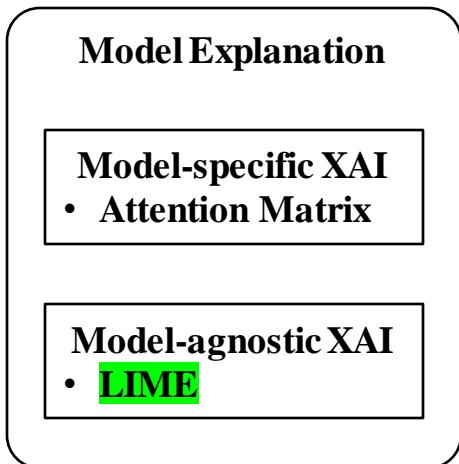
Attention matrix in Spring (17.03.01)

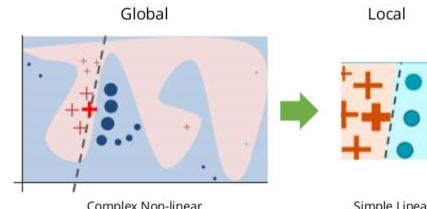
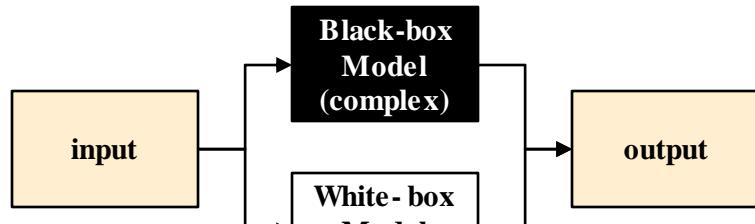

Background

- Horizontal axis: Forecast data
day-4, day-3, ..., day_0
- Vertical axis: Historical data (generation)
day-5, day-4, ..., day_1


Explanation

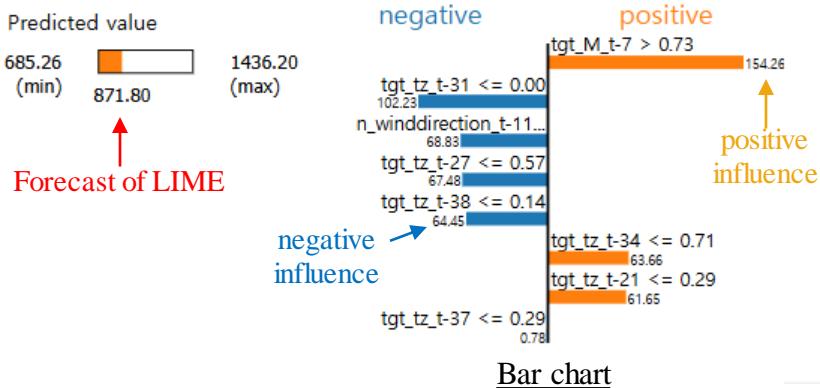
- First, red section in the bottom right,
we can see that when the transformer performs inference at
that specific time, the multi-head attention focuses on the
recent time step.
- Green section in top left, the red box has the highest value.
- Recall that the y-axis represents past data.
- Since the generation data does not change drastically, the
transformer references the initial generation values and pays
less attention to the subsequent ones.


- Two Types of Explainable AI Methods

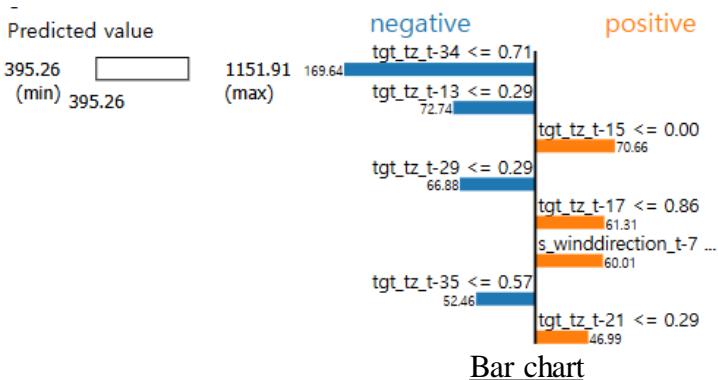


- Two Types of Explainable AI Methods

Local
Interpretable
Model-agnostic
Explanations

- LIME trains a white-box algorithm, like a linear model, on the local decision boundary of the main model.
- This white-box model is called a surrogate model, and its coefficients are used to interpret the original black-box model.



Explanation - LIME



Towards Global Eminence

[High power generation case] Time: 16.12.2017 15:00

[Low power generation case] Time: 28.06.2017 15:00

Feature Value

tgt_M_t-7	1.00
tgt_tz_t-31	0.00
n_winddirection_t-11...	0.89
tgt_tz_t-27	0.57
tgt_tz_t-38	0.14
tgt_tz_t-34	0.71
tgt_tz_t-21	0.29
tgt_tz_t-37	0.29

Actual feature values

Feature Value

tgt_tz_t-34	0.71
tgt_tz_t-13	0.29
tgt_tz_t-15	0.00
tgt_tz_t-29	0.29
tgt_tz_t-17	0.86
s_winddirection_t-7 ...	0.32
tgt_tz_t-35	0.57
tgt_tz_t-21	0.29

- The first figure represents the forecast of the LIME model.
- The right table shows the actual values of features.
- In the bar chart, the **orange** bar indicates a **positive** influence in LIME's explanation, while the **blue** bar does a **negative** influence.
- [tgt_tz] and [wind_direction] appear frequently, which means that these features had significant impacts on the power generation forecasting.

- We first trained wind power generation forecasting models using Transformer model, and then interpreted the model using the explainable AI such as a model-specific method (Attention Matrix) and a model-agnostic method (LIME).
- The Transformer model, WindTransNet-EDH, demonstrated excellent predictive performance compared with other forecasting models.
- Attention Matrix visualized how the model learned the relationship between weather forecast and historical generation data.
- LIME was used to analyze the impact of individual features on the prediction, enhancing model transparency.
- Explainable AI techniques increase model reliability and enhance the potential for real-world applications.

- [1] Traber, T. and Kemfert, C. "Gone with the wind? Electricity market prices and incentives to invest in thermal power plants under increasing wind energy supply," *Energy Economics*, Vol. 33, No. 2, pp. 249-256, 2011.
- [2] Yurong Zhang, et al., "Unit commitment considering effect of load and wind power uncertainty," *IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA)*, pp.1324-1328, 2014.
- [3] S. Li, D. C. Wunsch, E. A. O'Hair and M. G. Giesselmann "Using neural networks to estimate wind turbine power generation," *IEEE Transactions on Energy Conversion*, vol. 16, no. 3, pp.276 –282, 2001.
- [4] Adadi, A. and Berrada, M., "Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI)," *IEEE Access*, Vol. 6, pp. 52138-52160, 2018.
- [5] VASWANI, A. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.
- [6] RIBEIRO, Marco Tulio; SINGH, Sameer; GUESTRIN, Carlos. " Why should i trust you?" Explaining the predictions of any classifier. In: *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*. 2016. p. 1135-1144.

Towards Global Eminence

Thank You