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Introduction

Towards Global Eminence

Renewable energy 2030 plan

Else
15%

» The importance of renewable energy, such as solar and
wind power, is growing in efforts to achieve carbon

Solar
38%

63.8GW

Else = 15.1cw = Solar
54% Solar 57% neutrality and RE100.
2017 2018~2030 2030
» Renewable energy generation is highly variable, |H ‘ "
—> Accurate generation forecasting is important | !
for effective power supply planning | | | ; i ’ |
* Inthis study, we aim to interpret the forecasting ‘ ‘
model trained with a Transformer architecture. ; w \ ‘ h L A M \ lw |} ‘
(il M b LIV Lk L“J' J Wil
Wind power generation in 1 year (2017)
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Dataset

« 01.01.2014 ~ 31.12.2017 (4 years)

Wind Power » Wind generation : Recorded every 10 minutes

Generation . i
Data » Location : Sungsan wind power plants at the east

coast in Jeju island, South Korea 2 ils e Sungsen
Wind Power Plant

Data source of wind power plants

« 01.01.2014 ~ 31.12.2017 (4 years)
Weather « \Weather forecast : Announce starts at 2 am Q T4H%
Forecast - Announce every 3 hours (t = 2,5,8,11,14,17,20,and 23) i —

Data » Total 8 time-zones

Data source of weather forecast:
Korea Meteorological Administration (KMA)

“Combined two datasets at 3-hour intervals. 8 samples for every day”
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Framework
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- Procedure for the train and explanation of wind power forecasting models using Transformer
architecture (WindTransNet)

Model Traini A ( Model Explanati )
odel Trainin odel Explanation
Weather g P
forecast
data Hyperparameter Model-specific XAl
) Tuning » Attention Matrix
—>| Preprocessing > >
A\ 4

Wind power . Model-agnostic XAl
generation Best Model Selection . LIME

data N ) L )
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Train of WindTransNet

Towards C
t+1
- Wind power forecast model based on weather Output |~
) _ _ _ (8-step regression)
forecasting and historical power generation e

- Goal : to predict average wind power generation per 1 day (multi-step regression)

Historical Power Generation Data
(5 days)

Weather Forecast Data

(5 days)
d-3 t—31 11/02 /2014 02:00
t—7 14/02 /2014 02:00
d t—2 14/02 /2014 17:00
t—1 14/02 /2014 20:00
t 14/02 /2014 23:00
t+1 15/02 /2014 02:00
d+1 t+6 15/02 /2014 17:00
t+7 15/02 /2014 20:00
t+8 15/02 /2014 23:00
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Explanation of WindTransNet

Towards Global Eminence

« We focus on the Multi-Head Attention in the second sub-layer in the decoder.
- Because it allows to verify the relationship betweenthe decoder's input and the encoder's input, and
- the attention represents the final learning stage for generating the outputs (before the fully connected layer).

Qutput
Probabilities
Weather Forecast Data Historical Power Generation Data
(5 days) (5 days)
d-3 =31 11/02 /2014 02:00 d—a =39 10/02 /2014 02:00
Feed .. coo
Egual cross : :
=l : t—7 14/02 /2014 02:00 t-15 11/02 /2014 02:00
= attention
—— Add & Nom
St L e t-2 14/02 /2014 17:00 X d-11 t-10 13/02 /2014 17:00
AV t-1 14/02 /2014 20:00 t-9 13/02 /2014 20:00
. ‘a t 14/02 /2014 23:00 t-8 13/02 /2014 23:00
fdd S hom, Masked t+1 15/02 /2014 02:00 -7 14/02 /2014 02:00
Multi-Head Multi-Head
Attention Attention . . ... .
d+1 t+6 15/02 /2014 17:00 d -2 14/02 /2014 17:00
Positional Positional t+7 15/02 /2014 20:00 t=1 14/02 /2014 20:00
Encoding Encoding t+8 15/02 /2014 23:00 t 14/02 /2014 23:00
Input Qutput
LLA. Embedding Embedding
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Results — Forecasting of WindTransNet
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« Four wind power forecasting models
« LSTM: the improved recurrent neural network used for handling sequential data
« at-LSTM: the model that combines the LSTM with the Attention mechanism
« WindTransNet-E: the transformer model using an encoder without a decoder
- WindTransNet-EDH (proposed): the transformer model using both an encoder and a decoder

Performance of four wind power forecasting models Hyperparameter tuning of WindTransNet-EDH
et ] RMSE MAE = Hyperparameter Search space
ind forecasting :
model valid test valid test valid test T'm? Ilag 00} ol € 2 50 0 L B0
LSTM 452.78 464.08 31329 32421 036  0.33 Num. of layers l€4{L,2,4)
Num. of heads h e {2,4,8}
at-LSTM 467.22 47447 319.36 332.65  0.32  0.30 Learning rate e
WindTransNet-E  475.82 475.04 319.19 32324 030  0.30 Batch size 16
WindTransNet-EDH o 51 44076 30540 30096 036  0.39 Optimiser AdamW
(proposed) Dropout 0.2
Max epochs 10,000
Loss function MAE
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Results — Explanation of WindTransNet

Towards Global Eminence

« We focus on the Multi-Head Attention in the second sub-layer in the decoder.
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Explanation - Attention

Towards Global Eminence

Background
* Horizontal axis: Forecast data
day-4, day-3, ..., day 0
4 . Heatmap Decoder Cross ; » Vertical axis: Historical data (generation)
I day-5, day-4, ..., day 1
0.8

Attention matrix in Spring (17.03.01)

Explanation

* First, red section in the bottom right,
we can see that when the transformer performs inference at
that specific time, the multi-head attention focuses on the
recent time step.

* Greensection in top left, the red box has the highest value.
* Recall that the y-axis represents past data.
* Since the generation data does not change drastically, the

383634323028262422201816141210 8 6,

02 46 810121416182022242628W

transformer references the initial generation values and pays
less attention to the subsequent ones.

LA.l Lab.



Explanation - Attention

Towards Global Eminence

- Two Types of Explainable Al Methods

4 . N\ 4 ]
Model Trainin Model Explanation
Weather g P
forecast
data Hyperparameter Model-specific XAl
) Tuning « Attention Matrix
—  Preprocessing > >
A\ 4
Wind power : Model-agnostic XAl
generation Best Model Selection . LIME
data
. / J
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Explanation - Attention

Towards Global Eminence

- Two Types of Explainable Al Methods

4 . N\ 4 ]
Model Trainin Model Explanation
Weather g P
forecast
data Hyperparameter Model-specific XAl
) Tuning » Attention Matrix
—  Preprocessing > >
A\ 4
Wind power : Model-agnostic XAl
generation Best Model Selection . LIME
data
. / J
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Explanation - LIME N
Towards Global Eminence ' |

« LIME trains a white-box algorithm, like a linear model,
on the local decision boundary of the main model.

Local
Interpretable
Model-agnostic . . : .
g - This white-box model is called a surrogate model, and its
Explanations o _ o
coefficients are used to interpret the original black-box
_ ~N model.
Model Explanation B lack-box
Model
. (complex)
Model-specific XAl inout oI
« Attention Matrix P : ’ P
White- box
»  Model
(simple)
Model-agnostic XAl
° LIME Global Local
\ j e ,,’,’. ) k :,“
R e
o + 0
. 13

Simple Linear
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Explanation - LIME

Towards Global Eminence

[High power generation case] Time: 16.12.2017 15:00

Predicted value negative positive

M7 > 073
685.26 [l | 1436.20
(min) 871.80 {max)

15426
tgi_tz_t-31 <= 0.
102.23

n_winddirection t-11...

e jpos itive
tgt tz t-27 < .
Forecast of LIME & influence
tgt_tz_ 38 <
i 445
negative ¥ 17 £-34 <= 0.71
. B3.6E
influence -tz t-21 <= 0.29

gt tz 37 <= 0.2
0.7

Bar chart

[Low power generation case] Time: 28.06.2017 15:00

Predicted value

39526 [ | 115191 1esse

(min) 395 56 (max)

negative positive
tgitz t-34 <= 071

gtz 13 <= 0.2
T274

-tz +15 <= 0.00
7066

gt tz t-29 <= 0.2
66.28!

-tz 17 <= 0.86
131

s winddirection_t-7 _.
60.01
tgt tz +-35 <= 0.5

t7 121 <= 0.29
46.99

Bar chart

Feature Value

gt M_t-7
tgt tz 131

n_winddirection_t-11

tgt_tz_t-27
gt tz 38
gt tz +34
igt tz £-21

tgt tz +37

Actual feature values

Feature Value
gt tz. 34
gt tz_t-13
tgt_tz_ 15
gt tz. 29

gtz H17

5 winddirection_t-7

tgt tz_135

tgt tz 21

» The first figure represents the
forecast of the LIME model.

* The right table shows the
actual values of features.

* Inthe bar chart, the orange bar
indicates a positive influence
in LIME's explanation,
while the blue bar does a
negative influence.

+ [tgt_tz] and [wind_direction]
appear frequently, which
means that these features had
significant impacts on the
power generation forecasting.



Conclusions
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- We first trained wind power generation forecasting models using Transformer model, and then interpreted the

model using the explainable Al such as a model-specific method (Attention Matrix) and a model-agnostic method
(LIME).

- The Transformer model, WindTransNet-EDH, demonstrated excellent predictive performance compared with
other forecasting models.

- Attention Matrix visualized how the model learned the relationship between weather forecastand historical
generation data.

- LIME was used to analyze the impact of individual features on the prediction, enhancing model transparency.

- Explainable Al techniques increase model reliability and enhance the potential for real-world applications.

LA.I_Lab.
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